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Abstract

Ozsoy, E., C.J. Lozano and A.R. Robinson, A consistent baroclinic quasigeostrophic ocean model in multiply
connected ocean domains, Mathematics and Computers in Simulation 34 (1992) 51-79.

The Harvard ocean baroclinic quasigeostrophic model is further extended to enable the treatment of multiply
connected domains with arbitrary coastal boundary geometry. A set of sufficient quasigeostrophic boundary
conditions at physical boundaries are determined by requiring consistency with a regular asymptotic expansion
in the Rossby number of the primitive equations. To take advantage of fast Helmholtz solvers in regular
domains, the physical multiply connected domain is embedded in a regular grid, and boundary conditions are
imposed by using a variation of the capacitance matrix method. The accuracy of the method is exhibited by
comparison with exact solutions.

1. Introduction

The Harvard baroclinic quasigeostrophic model is an eddy-resolving open ocean model [13]
used extensively to study oceanic dynamical processes [19] and in forecast and hindcast studies
[21]. The numerical calibration of this model [7,13,21] has shown that it provides the efficiency
and accuracy required in these applications.

In a previous work Milliff [15] extended the Harvard open ocean model to simply connected
oceans with coasts. Here we continue this extension to multiply connected oceans (i.e., with
islands) and irregular physical boundaries. In the extension from simply to multiply connected
domains, Dirichlet boundary conditions are expressed indirectly in terms of line integrals
around the boundaries. This indirect prescription of the Dirichlet data is necessary in order to
construct a quasigeostrophic solution that represents the leading term in an asymptotic
expansion in the Rossby number to the primitive equations [11]. It is in this context that we call
the set of conditions specifying the Dirichlet data at closed coastal boundaries (islands or a
closed outer boundary) consistency conditions. In the numerical algorithms the core of our
work is the following. The quasigeostrophic model requires at each time cycle the solution of a

1 Present address: Institute of Marine Sciences, Middle East Technical University, P.K. 28, Erdemli, I¢el 33731
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set of elliptic problems. In a regular rectangular domain, advantage is taken of fast Helmholtz
solvers, and in extending the model to irregular physical boundaries in a multiply connected
ocean, we extended Milliff’s modified capacitance method preserving the efficiency and
accuracy of the direct method. The extension of direct solvers to accommodate irregular
domains is well known [1], and here we develop a further variation of the capacitance matrix
method [25], initiated by Milliff [14,15], which incorporates in the capacitance matrix the
indirect prescription of the consistency conditions. In addition the time step algorithm (prog-
nostic) of the Harvard model is modified in order to satisfy boundary conditions at irregular
boundaries. This new development remedies undesirable vorticity transports across physical
boundaries present in Milliff’s model.

Capacitance methods have been previously employed for this problem. In early implementa-
tions [8,12] of full nonlinear baroclinic quasigeostrophic models the capacitance methods were
based upon the work of Buzbee et al. [1] and applied to eddy-resolving basin-wide simulations
on simply connected and single island domains. For later implementations of this approach,
due essentially to Holland [8,9], see [4]. For another related implementation see [16]. The main
differences in our approach from previous work are our ability to include islands within closed,
semi-closed or open ocean outer boundaries. For all of these cases we determine a sufficient
set of integral constraints for a well-posed problem and a simple and robust algorithm. Finally,
in the numerical implementation, following [14], these constraints are incorporated into the
capacitance matrix.

In Section 2 we introduce the initial boundary value problem for the baroclinic quasi-
geostrophic model as the leading approximation in the Rossby number to an initial boundary
value problem for the primitive equations and derive a complete set of boundary conditions
asymptotically consistent with this reference problem. Subgrid effects are modeled with a scale
selective Shapiro filter [22]. The algorithm of the modified capacitance matrix method for
multiply connected domains is presented in Section 3. In Section 4 we compare the model with
an exact solution due to Flierl [5] of a linear baroclinic problem corresponding to quasi-
geostrophic free modes in an annulus. OQur test runs serve to demonstrate the potential
efficiency and accuracy of the model and, in addition, have enabled us to calibrate the model
for enclosed, semi-closed and open oceans where islands play a dominant kinematic and
dynamic role, e.g., the Eastern Mediterranean. Our final discussion and conclusions are given
in Section 5. Details of derivation and numerical algorithms are relegated to the appendices.

2. Quasigeostrophic initial boundary value problem
In this section we state the problem to be solved and show that our selection of boundary
conditions provides a sufficient set of boundary conditions to render the problem well posed. In

this paper we consistently use nondimensional variables unless stated otherwise.

2.1. Ocean domain

The ocean domain is approximated by a cylinder with horizontal area D confined between
the ocean surface z =0, and a bottom surface z= —1+ en(x, y), with small topographic
variations en(x, y) measured from a mean depth of z = —1. The horizontal domain geome-
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Fig. 1. Schematization of multiply connected domains: (a) enclosed, (b) semi-closed and (c) open outer boundaries.

tries are shown in Fig. 1. For modeling purposes we assume the fluid domain D to be
embedded in a rectangular region R with boundary dR. In the case of the enclosed geometry in
Fig. 1(a), closed coastal boundaries interior to dR are represented as C;, j=0,..., M, C, being
the outer basin boundary, and C »J=1,..., M, the M island boundaries interior to C,. In the
case of the semi-closed geometry in Fig. 1(b), the outer boundary consists of open segments
O, k=1,...,L, and adjoining coastal segments §,, k=1,..., L, where L is the number of
segments. Finally, for open oceans in Fig. 1(c), the outer boundary O, coincides with 3R.

2.2. The quasigeostrophic model

The quasigeostrophic equations are the leading terms of a uniform asymptotic expansion in
the Rossby number € of the primitive equations. In order to clarify the specification of the
boundary conditions we outline a brief derivation. For details the reader is referred to
[6,11,17,21]. Our starting point is the (nondimensional) equations of motion of incompressible

water over a rotating Earthi where the beta plane, hydrostatic and Boussinesq approximations
have been introduced:

e(u,+au-Vu)+ (1 +eBy)k Xu=—Vp +ef, (2.1a)
p,—0=0, (2.1b)
Vou+ew, =0, (2.1c)
8, +au-Vo+|(Io(z))”" +ead,|w=d, (2.1d)

where u is the horizontal velocity, p the pressure and & the buoyancy (proportional to negative
density perturbation), V denotes the horizontal gradient and subsgripts denote differentiation.
The local vertical component of the Earth’s rotation varies as €Byk with meridional distance y,
and k£ is a unit vector pointing upwards. The Rossby number ¢ is a small parameter measuring
the relative importance of inertial as compared to rotational effects, and « is the ratio of the
inertial to advective time scales. The background density stratification is represented by
I'?a(z), where the constant I'? scales its strength and o(z) is its local order 1 vertical
variation. f and d are the body force and buoyancy source, respectively.
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The vertical velocity w is already scaled by e to reflect the fact that w is one order smaller
than the horizontal velocity. Assuming a regular asymptotic expansion in e for the variables
u,w, p and 8 (e.g., u =u® + eu® + O(e?)), we obtain from (2.1)

90

- TV (Qu?) =0, (2.2a)
where

Q={+a By, (2.2b)

{=V+(IPoy,),. (2.2¢)

The relative and thermal vorticity, the first and second terms respectively in (2.2¢), depend
upon the state of motion. The potential vorticity Q is formed from these contributions and the
planetary vorticity, the second term in (2.2b). Here ¢ = p® is the streamfunction related to the
leading term in the horizontal velocity by ‘

u®=Fk x vy. (2.2d)
For later reference, in terms of the density anomaly p =1 20:1/2, the vertical velocity is given by
w® = —[p, +au®-Vp| +I'’od, (2.3a)

and its vertical derivative defines the first-order horizontal divergence

Voud= —p®, (2.3b)

2.3. Boundary conditions

The boundary conditions at the top and bottom of the ocean are obtained using a classical
asymptotic analysis of Ekman frictional layers [17]:

a A

w(°)=—(—a; +au(0)'V)ps=k‘V><'r, on z =0, (2.4a)
d A

w® = _(a—t +czu(°)-V)pb=E1/2 k-VXu®+u® -V, onz=-1, (2.4b)

where the Ekman number E is a nondimensional measure of the vertical diffusivity of
momentum, p, =20 3y /3z | ,—9, p, =T%c W /32|, _.

At open boundaries, we require the Charney, Fjortoft and von Neumann [2,13] conditions,
namely flow is prescribed everywhere in the boundary and vorticity is prescribed at inflow:

g =vo(x,y,t), onO, k=1,...,L, (2.5a)
Q=04x,y,t), ifu®A<00on0O,, k=1,...,L, (2.5b)

where 7 is the outward pointing normal vector to O,. For semi-closed basins (Fig. 1(b)), the
boundary condition on the coastal segments S, are no inflow into the boundary and, following
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[18], the streamfunction is continuous at the intersection of open boundaries with coastal
boundaries:

u®-A=Vy-§=0, ¢y=¢FfonS,, k=1,...,L, (2.5¢)

where § is the tangential unit vector to S,, ¢ is the limit of the streamfunction along the
adjacent open boundary O, or O,_, to S, as it approaches the coastal segment S,.

At all coastal closed boundaries (islands, coastal outer boundary) we require the kinematic
condition of no flux normal to the coasts:

u®-A=Vy-§=0, onC,, j=1,...,M. (2.6)

Additional boundary conditions depend upon the physical parametrization of f and d in
terms of the state variables. For instance, if one assumes f= K V2u, then a possible boundary
condition is a no-slip condition [11]. In our derivation we find it convenient to keep the body
force f and remove buoyancy sources d, whereas in our numerical implementation we do not
include internal buoyancy sources, so d@ =0, and dissipation, so f® =0. In the time step
algorithm for the potential vorticity, instead of dissipation, we employ a scale selective Shapiro
filter [22], removing vorticity cascaded to grid resolution [10].

The problem of interest for a semi-closed ocean is the initial boundary value problem for the
reduced set of equations (2.2), including the boundary conditions (2.4)—(2.6) with initial
conditions

y=u,, fort=t,, (2.7a)
Ps=pPin atz=0, py=py;, atz=—1, for t =1¢,. (2.7b)

The enclosed basin initial boundary value problem can be obtained from the previous
problem by removing (2.5) and extending (2.6) to include the outer boundary (j=0,...,M).

2.4. Additional boundary conditions: the consistency conditions

As it stands, the initial-value problem stated above does not have a unique solution since
(2.6) can be satisfied by specifying the streamfunction ¢ at closed coastal boundaries C; as
arbitrary functions of time and depth a,bcj(t, z). It is of importance to notice at this point that
once the functions ¢ have been selected (with appropriate smoothness conditions), then the
initial boundary value]problem stated in Section 2.3 is well-posed, except for rather pathologi-
cal cases. We now remove the indeterminacy in the selection of the functions (¢, z) by
requiring consistency with higher-order terms of the original primitive equation problém.

Assuming a uniform asymptotic expansion over the domain D (i.e., no boundary layers are
formed in D), the first-order terms in the momentum equation (2.1a) are

a A A
a_t"(O) + (aV2 + By)k X u® + k xu® = —V(p® + 3au@ - u®) + fO.

Letting again §, A be the unit tangent and normal vectors to a closed path C contained in D,
the line integral of the above equation along C yields

Pu®- A di= -a—géu«’w dl = f@ 5 dl — (aV?y +By)u® -7 dI (2.8a)
¢ ot J¢ C c ’ '
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where we have used k X u-§ = —u - A and assumed that the first-order pressure function pVis
single valued; furthermore, if the contour C coincides with an island C;, j=1,...,M, or a

closed outer boundary C,, then the local kinematic conditions

u® A=u®-A=0 (2.8b)
simplify (2.8a) to:
d')’j(t)
= O®.¢dl, 2
a RIS (2.92)
where
v,(1) =95CV¢I ‘A dl (2.9b)

is the quasigeostrophic circulation at time ¢ over the coastal boundary C;.
At the initial time ¢, the quasigeostrophic circulation

y,(to) = ¢C Vi A dl (2.9¢)

is known; thus the circulation at time ¢ depends, in a unique fashion, upon the initial
circulation and the line integral of f© around C; over previous times.

We show in the next subsection that for semi-closed basins the quasigeostrophic circulations
y(t) determine uniquely the streamfunction values at coastal boundaries 'J/C,(t’ z). For en-
closed basins, other than an additive constant, a similar result holds. This constant has no
bearing on the dynamics .

2.4.1. Modal representation
At this point, it is convenient to introduce the modal representation of the solution in

preparation for the proof of the statement above and to the numerical algorithms.
The eigenfunctions of the Sturm-Liouville boundary problem

d [ dst A\ dstm! st
(0 )=_(_) s, 1<z <0, (-1)=— (=0
z

dz dz r dz
form a complete set of functions and the corresponding eigenvalues Ay = 0<Ay < <Ay
< --- are simple [17]. The first mode Ay =0 is called barotropic; the remaining baroclinic. In
the modal representation ¢ and { are given by 2
=Y "N (x, y, t)S"(z), (2.10a)
mz=0
(=Y "™(x, y, 1)S"(z). (2.10b)
m=0

1 However, if the rigid lid approximation implied in (2.4a) is relaxed, then the choice of the constant is no longer

arbitrary.

2 This is strictly correct for the case of constant top and bottom density. For variable top and bottom density,
modifications are required including additional terms in the elliptic problems; but these additional terms do not
alter the solvability arguments or the numerical solution procedures.
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In the modal representation equations (2.2¢), (2.5a), (2.5¢), (2.6) and (2.9) lead us to the
family of elliptic problems

Vzd’[rn] - (A[m])zw[m] = é«[m]’ (211)
with boundary conditions
p™=yl™ on O, k=1,...,L, (2.12a)

at open boundaries,
vylm-§=0, ¢ =y*"™ons,, k=1,...,L, (2.12b)

on coastal segments of semi-closed domains; and for enclosed basins the barotropic component
(m = 0) at the outer boundary satisfies

=0, on C,, - (2.12¢)
whereas the baroclinic components (m > 0) satisfy
Vyl™.-§=0, on C,, (2.12d)
t
yim(t) = yimi(1,) +/t¢cf[”’]-s dl de. (2.12¢)
)] 0
Finally for all islands (j > 0),
Vylml-§=0, on C,, (2.13a)
t A
yImI(r) = y7(1y) + f, gﬁcf[’"] -§ dl dt. (2.13b)
0: S

Here y}’"] is the quasigeostrophic circulation around the boundary C; of the modal streamfunc-
tion ™,
In Appendix A we show that these boundary value problems have unique solutions.

3. The modified capacitance matrix method: multiple coast segments and multiply connected
domains

In the Harvard open ocean quasigeostrophic model the potential vorticity Q is advanced in
time using the discrete version of (2.2a) (prognostic) and then the new streamfunction is
computed in the modal representation (diagnostic). The detailed description of the numerical
algorithms for the Harvard quasigeostrophic open ocean model can be found in [7,13]. Here we
give a brief description of the algorithm.

Grid
The model uses in the horizontal a rectangular grid R, with a constant grid spacing 4. In the
vertical the grid is nonuniform and set up at K levels z, = —-H,, k=0,..., K—1.
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Let ¢, denote the values of ¢ at z=2z,, k=0,..., K~ 1, and let

& =8(2)s k=1,...,K-2,

_ Ps - __ P
{0—§(zo)+ H,’ {k-1 {(zx-1) HK—l—Hk-Z'

In the initial boundary value problem, we seek to determine ({g,...,¢ w_1)s Pis Py satisfying
the evolution equations (2.2a), with Q, ={, +a By, (2.4), initial conditions (2.7) and the
boundary conditions (2.5), (2.6), and consistency conditions (2.11), (2.12).

Prognostic

The discretization of (2.2a) and (2.4) uses a fourth-order accurate finite element in space,
and a second-order accurate Adams—Bashforth time difference scheme. The updated values
(Los-+->Lk_1)» Ps» Py AL each time step are passed through Shapiro filters [22] to remove high
wavenumbers ( ~ 2—4 grid points).

Diagnostic

The new prognostic values (£g, ..., {k-1), Ps> Py aT€ transformed to the truncated (K terms)
modal representation (2.10) and the resulting elliptic problems (2.11)-(2.13) are solved via the
algorithm in Section 3.3. The model uses a fast Helmholtz solver based on block cyclic
reduction [23] amenable to vector and parallel implementation [24]. The solver is used twice; in
the second pass the method of deferred corrections is used in order to attain fourth-order
accuracy consistent with the space discretization used in (2.2a) and (2.4).

Our extension to the open ocean model includes modifications to the time stepping
algorithm in order to account for physical boundaries in the interior of the domain; thus, the
computational molecules at physical boundaries satisfy boundary conditions and potential
vorticity is filtered in the physical domain only (including physical boundaries). This modifica-
tion was not included in Milliff’s implementation [15].

We now proceed to present the numerical solution of the baroclinic and barotropic elliptic
boundary value problems (2.11)—(2.13). For the sake of simplicity, throughout this section we
drop the index [m] distinguishing the modes, and we separate the cases for enclosed and
semi-closed or open oceans only when it becomes pertinent.

3.1. Discrete domain and boundaries

We denote by R, a grid in a rectangular domain R (Fig. 2) with grid spacing h. From here
on the subscript A& denotes functions defined on that grid. The discrete projection of the fluid
domain D on this grid system is a subset D, of R,. A boundary segment of D is approximated
by grid points along a staircase curve formed by picking the closest successive pairs of nodes
along the grid lines. In the semi-closed case the outer boundary is made up of open boundary
segments O, ; contained in the boundary set 9R,, of R, and solid segments S, , k=1,...,L.
The interior boundaries are islands C, ;, j=1,..., M. The sets S, and C,, ; must be contained
in the interior R, =R, — 3R, of R,. For enclosed basins there are M + 1 coastal segments
Cppl= 0,..., M. We denote by CI=vu iChj the union of all closed coastal segments and let
M= |CJ| denote the total number of grid points at closed coastal boundaries. The union of all
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Fig. 2. Schematization of the discrete rectangular grid R, and the boundaries (a), and the adjacent set C{,‘ to the
closed boundary segment C,, (b). The number next to a boundary point is its number of neighbors in the interior of
D,.

coastal boundaries is denoted by &, =(U ,_,
total number of boundary grid points.

C,,) and #=|%,| the

~~~~~~~~~~

3.2. Discrete boundary value problem

In the physical interior D, we approximate (2.11) using the standard five-point Laplacian
K,:

K [4(D)] = X4 (i) = §(i), i€D,. (3.1)
For semi-closed basins the boundary conditions (2.12a), (2.12b) are cast in the form

Un(i) = (Yo)uld), 1€ 04y, (32a)
at open outer boundaries. At solid outer boundary segments, with ; , denoting successive
grid points in S, ., the boundary condition (2.5¢) is

Uai,) =Wnliper)s P=1,..,0—1, (3.2b)

(1) = () (1), (3.2¢)

where_ 1 is the grid point adjacent to i, €S, , and belonging to an open boundary segment;
((/;O)h(l) is the prescribed boundary condition at this open segment grid point and k=1,..., L.
The barotropic enclosed boundary condition (2.12¢) is written similarly to (3.2b), (3.2¢), and the
conditions (2.13a) are written similarly to (3.2b).

The discrete analog of the quasigeostrophic circulation integral (2.9b) of a closed boundary
C, ; is formed as follows. Each grid point i € C,, ; has either 0, 1 or 2 neighboring points, along
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the axes, lying in the interior of the physical domain D, (see Fig. 2(b)). Letting

Yhii = Z [9a(i) — ¥a(i))] (3.3a)

where the summation over i, extends over the interior neighboring points if any. The discrete
quasigeostrophic circulation integral along C,, ; is now given by

Yni= Z Yh.,ji (3-3b)
ieC;
Finally, we specify the consistency (inviscid) condition (2.13b)
Yh ="V j=1,...,M. (3.3¢)

The definition (3.3a), (3.3b) of the circulation integral is motivated as follows. Complement-
ing the definition (3.3a), (3.3b), with similar definitions of the discrete circulation integrals
y,f?k,y,f,k along open and semi-closed boundaries respectively, it is simple to show that the

discrete Green theorem

L M
Y Ku[du(D)]h* = Y (vixt Yix) + Y Ynis (3.4a)
ieD} k=0 j=1
for semi-closed domains, and
M
Z Kh[d’h(i)]hzz Z Yh,j (3.4b)
ieD} j=0

for enclosed domains, holds. Here D}, are the physical grid points not at the boundary of D,.
In addition, a discrete analog of the first Green identity (A.S) holds; and, as a result, the
solvability of the discrete elliptic boundary value problems can be proved as in Appendix A.

3.3. Modified capacitance matrix algorithm

Let again R}, and 9R,, denote the set of interior grid points and boundary points of R,
respectively. We associate to the discrete boundary value problem (3.1)-(3.3) the following

functions in R,.

The discrete Green functions @,
For each grid point / on the solid boundaries #,! we define a discrete Green function on R,

given by
K, [®,(i, D] = 2®,(i, 1) =8,(i, 1), forieR, (3.5)
d,(i,1)=0, for i €9R,,. '

Here the Kronecker delta 8,(i, /) takes the value zero for i € R, everywhere, except at the grid
point i = where it takes the value 1.

R
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A particular solution

Let ¢} denote a function defined over R}, such that it coincides with the right-hand side ¢, of
(3.1) in D,; and let 2 be defined over 8R,, such that it coincides with the right-hand side of
(3.2) over O, ;. A particular solution wF is the discrete function satisfying

K[wF(i)] = Byl (i) = Li(i), i€R',

] . ] 3.6
Uy (1) =, (i), [ €3R,. (2
The ansatz
We now propose a solution to (3.1), (3.2) and (3.4) of the form
Gu(i) =i (i) + L w(D)@,(i, 1), i€R,. (3.7)
lect

In view of (3.5) and (3.6) the proposed function (3.7) satisfies (3.1) and (3.2a) for arbitrary
extensions of {, to the nonphysical domain, and for arbitrary values of the function w, defined
on &,'. In passing we notice that the second term b= e ewi{DP,(i, ) is the solution to

K [B,(0)] —228,(i)) = L wi(l)d,(i, 1), forieR?, (3.8a)
lec]

d,(i,1)=0, for i €9R,,, (3.8b)

thus representing the reésponse to vorticity point sources of strength w,, distributed over &,

Algorithm
In order to satisfy the remaining boundary conditions we substitute (3.7) into (3.2b) and (3.4)

obtaining precisely .# = | &,! | equations for .# vorticity point sources wy:
Gw,=r,. (3.9)

For details in the assembling of matrix G see Appendix B. The matrix G,, is nonsingular and its
coefficients are independent of the inhomogeneous terms in (3.2b) and (3.3¢c); thence it can be

inverted for each geometry once and for all.

In our implementation the matrix G; ', the modified capacitance matrix, is computed once
per mode [m] and model geometry and then stored.

At each time step cycle and for each mode [m] our method proceeds as follows:

(a) the particular solution ¥} is obtained solving (3.6) with the fast Helmholtz solver with
two passes;

(b) the right-hand side r, of (3.9) is assembled and the vorticity point sources w, =G, 'r,
are computed; and

(c) ¢, is found by using the Helmholtz solver for the problem

Kl ()] = MU (i) = Lh() + X wi(D)8(i5 1), i€RY, (3.10a)

lect

¥, =P R, (3.10b)
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Algorithm overhead

The computational overhead of the method is as follows. The computation of the capaci-
tance matrix G, ! requires .# applications of the fast Helmholtz solver to determine the
discrete Green functions @,[/] for each grid point / € C; at closed coastal boundaries and the
inversion of G,. During computational cycles the storage of the capacitance matrix is required.
At each computational time cycle the fast Helmholtz solver is required to solve (3.6) and (3.10);
thus the number of passes through the solver are 2 as many as for the open ocean model. The
computational cost assembling the residual r, and computing the vorticity point sources w,, is
nominal.

4. Numerical experiments

In this section we discuss a set of numerical experiments aimed to test the model implemen-
tation by reproducing an analytical solution of Flierl [5] in a multiply connected domain, and we
illustrate the application of the model to a realistic ocean model simulation.

4.1. Linear, baroclinic free modes in an annulus

A two-level ocean (K = 2) occupies an annular domain 7 <r < 1, with r =(x2+y*)'/?, 0 <F
< 1, without any surface or bottom forcing (p, = p,, = 0). For this problem, the regime is linear
(a = 0) and there is no interior dissipation (f@ =0). To set the numerical model we select
levels z, = — %, z,= — 3 and o =1 to find the eigenvalues A =0, Ay, =T. The solution to
(2.2a) of interest is the pure baroclinic mode Y= 3(y, —¢,) such that ¢, = —¢, and
¥ = 1(y, + ¢,) = 0. The time-periodic streamfunction is

Yl =R{F(x, y)e kxteo}, (4.1)

with F satisfying

VIF—p2F=0, v?=T%?—pu?, p=—. (4.2)

w
The boundary conditions (2.11) in terms of F are
F=ce #res? atr=1, B WE S 0 af F= (4.3a,b)

where ¢, and c; are undetermined coastal constants. The boundary conditions (2.13) read

2w . oF A
/ g Imr cos "E—d() =0, atr=rand r=1. (4.4a,b)
0 r

The relationships (4.3) and (4.4) are satisfied for a countable number of eigenfrequencies,
and for each eigenfrequency w, there is a unique ratio of amplitudes ¢, /c;. The amplitude at
one of the coasts is fixed by the initial conditions. In our simulations we use the largest
eigenfrequency w,, except for one case where we use the second eigenfrequency w,. The
solution for F is expressed in terms of Bessel and trigonometric series [5].
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4.2. Numerical solution of the Flierl’s problem

From (4.1) we see that the solution is a Rossby wave traveling east with wavenumber w and
frequency w modulated by an amplitude function F (x, y). Figure 3 shows the computed and

analytical streamfunction and vorticity at time2T and T for an ocean with an opening at the

western boundary along the line x = — . The analytical solution satisfies (4.1)-(4.4), whereas

the numerical solution satisfies (4.1)-(4.3) and (4.4b). At the outer open boundary (4.4a) is
replaced by the continuity condition (2.5¢); at the open boundary we use the open boundary
condition (2.5) with ¢, and Q, given by the analytical solution. In the following semi-closed
basins (S) experiments, the analytical and numerical solutions are obtained in a similar fashion.

rree

4 I

[FEIAEN
tiregft,
ttygr

MiN=—2,34E+00 MAX= 2.S8E+00 Cl=2.S0E—01 MiN==1.80E+00 MAX= 2.48£+00 Clm2,50E-01

3/4 T T

= o

[XITLIAN)
[RATRL

A
= A)
H i 1
5
*
°°=Q°°
£ o Ty

MiN=~2,57€+00 MAX= 2.57E+00 Cim2.50£~01 MiN=—1,80E+00 MAX= 2.49E+00 Ci=2,50E-01

3/4 T (a) T

Fig. 3(a). Numerical (top panels) and analytical (bottom panels) streamfunction at times 37 (left panels) and T (right

panels) where T is the period, and for I'2 = 10, F =0.2.
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MIN==~1.15€+02 MAX= 9,18E+01 Ci=1.60E+01 MiIN=~1,50E+02 MAX= 6,27E+D1 Ci=1.60E+01

3/4T T

MiN=-9.20€+01 MAX= .20E+01 Ci=1.60E£+01 MIN=—1.54E+02 MAX= 6.20E+01 Ci=1.60E+01

3/4 T (k) T

Fig. 3(b). Same as in Fig. 3(a) for vorticity.

A selection of the numerical experiments carried out is summarized in Table 1. We selected
B =1, and using the basin radius r = 1 as a horizontal length scale, the grid size Ax = 3—10. Space
and time resolutions are characterized, for consistency with [21], using 7= 3T At = Jmo At
and v=27/(n -4 Ax) = lom Ax, where 7 is the number of time intervals in a quarter period
and v is the number of space intervals per quarter wavelength, respectively. The selection of 7
and v was based upon the findings in [15] and a set of test runs with free Rossby waves (not
shown) using similar physics (a =0, B = 1). Our experiments were determined to be satisfac-
tory when the root mean square €rrors RMSE for the streamfunction and vorticity were similar
to the equivalent free Rossby waves experiments. The analytical series solutions have a good
convergence with about 20 terms in the series in all cases except for I'? = 80. For this case we
accepted errors in the analytical solution of about 5 percent. In all these runs the Shapiro filter
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Table 1
Model runs summary of comparison with analytic solutions
Run Domain Stratification Island radius Time step Grid size Maximum RMSE
type 2 F T v W {
A E 10 0.0 20 3.0 0.03 [1] 0.06 [1]
0.13[5] 0.14 [5]
B S 10 0.2 10 2.9 0.04 [1] 0.09 [1]
0.05 [5] 0.10 [5]
C E 10 0.2 10 2.9 0.02 1] 0.08[1]
0.036 [5] 0.09 [5]
D E 10 0.2 5 2.9 0.16[1] 0.27[1]
0.22 [5] 0.4 [5]
E° E 10 0.2 5 2.4 0.14 [1] 0.17[1]
0.63 [5] 0.64 [5]
Fe E 10 0.2 ‘ 20 2.4 0.12[1] 0.13[1]
0.54 [1] 0.52 5]
G S 80 0.2 25 1.2 0.15[1] 0.17[1]
0.27[2] 0.30[2]
H E 80 0.2 10 1:2 0.09 [1] 0.11[1]
0.20 [2] 0.21[2]
I E 50 0.2 375 1.5 0.11[1] 0.12[1]
0.20 [2] 0.22 (2]
J E 50 0.2 25 1.5 0.13[1] 0.20[1]
0.20 (2] 0.22[2]
K E 10 0.6 30 1.9 0.11[1] 0.12[1]
0.15[1] 0.22[2]
L E 10 0.6 20 1.9 0.11[1] 0.12[1]
: 0.15[1] 0.22[2]

* E = enclosed, S = semi-closed domain.
® The number in brackets is the number of periods of integration for which the maximum error is reported.
¢ For second eigenfrequency.

was disabled. The physical parameters I'2 and the island size 7 were selected to reproduce
similar results in Flier]’s examples and Milliff’s experiments [14], and extended to other regimes
of oceanographic interest. In Table 1 we report the maximum normalized root mean square
error (RMSE) in streamfunction and vorticity observed in a given number of periods. The error
tendencies are better observed in the RMSE time histories shown for instance in Fig. 4.

Run A is for a simply connected basin F=0 with I'>=10 and reproduces a numerical
experiment in [14]. The growth of the error trend shown in [14, Fig. 13C] persists if the solution
is continued for several periods using the previous algorithm. Replacing the algorithm with our
new implementation we are able to reduce the errors and maintain the low level of error for
the entire length of the experiment (5 periods). We attribute the improvement to a correction
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in the evaluation of the circulation integral of [14] (see Appendix B), and to the control of
vorticity leakage across boundaries achieved by the modification of the time step algorithm.

A comparison between semi-closed and enclosed configurations indicates that no significant
error differences occur. This is illustrated for the worst case, runs G and H in Figs. 5 and 6.
Previous experiments (not shown) with a correct circulation integral but with no vorticity
leakage correction show systematically larger errors and noticeable discrepancies between the
enclosed and semi-closed configuration.

Starting with experiment C, a series of runs varying frequency (E and F), I'* (I and J) and
island radius (K and L) show reasonable errors despite coarser spatial resolution 7. Figures 7
and 8 show the fields and associated RMSE errors for two different geometries and two
stratifications, runs C, I and L.

The error dependence in the parameter 7 is illustrated in Fig. 9 for I'*=10, 7 =0.2.
Detailed analyses of the fields both for these experiments and the free Rossby waves show that
the discrete phase speed is slightly faster than the analytical phase speed leading to phase
shifting and is, in part, responsible for error growth.

4.3. Real ocean data application

The first application of the new model to real ocean data initialization and simulation is in
the Levantine Basin of the Eastern Mediterranean Sea. This is an interesting test of the model
because the coastlines, an island (Cyprus) and topography present complex constraints to a flow
field which is composed itself of a rich set of interconnected subbasin scale gyres and jets [20].
We demonstrate here a simulation initialized with the objectively analyzed observations from
the multiple ship cooperative survey of the POEM (Physical Oceanography of the Eastern
Mediterranean) program on November 1985. Figure 10 shows the main thermocline (z = —80m)
streamfunction after 5 days. The resolution is 5 km (v ~ 5-30) and the time step 2 hours is
limited by the Courant-Friedrichs—Lewy condition. The dynamically adjusted features main-
tain the overall structure of the observations, and are remarkably stable and robust in 45 day
runs. Robust and semi-permanent anticyclones are observed in the Southern portion with
motions penetrating below the thermocline. The Northern flows are separated by meandering
currents and filaments eventually approaching the Cyprus region where different recirculation
regimes are established. To the North of the Eastward meandering current cyclonic and
anticyclonic eddies accompanied by strong coastal currents interact. The permanent cyclone in
the Northeast portion of the basin, the Rhodes gyre, as well as the Anaximander eddy are well
represented in this run.

5. Discussion and conclusions

The extensions to the Harvard quasigeostrophic model numerical algorithms to accommo-
date arbitrary coastal boundaries, namely the modified capacitance matrix algorithm for
multiply connected domains and time stepping algorithm in an irregular domain, are efficient
(Section 3.3) and comparisons with exact linear solutions (Section 4) show good convergence in
regimes of oceanographic interest.

Fig. 4.
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Solvability for the elliptic problems in the quasigeostrophic initial boundary value problem
consistent with a primitive equations (PE) initial boundary problem has been established.
Previous authors ([11,18] and others) have proposed various sets of consistent boundary
conditions without proof of solvability. It follows from our proof that the various sets of
conditions proposed by McWilliams [11] are solvable; albeit complicated. In the process of
establishing solvability (Appendix A) we have constructed influence functions (A.1) that are
utilized in Holland’s capacitance matrix algorithm [8]. Here the use of the circulation matrix
(A.4) provides some simplifications to their approach.

The computation of quasigeostrophic circulation integrals at coastal boundaries along coasts
with tortuous geometry must be avoided. In this case it is desirable to compute the circulation
integral, using the divergence theorem, in terms of an interior circulation and area integral.

MiN=-3.27E+01 MAX= 2.87E+01 Ci=5.00E+00 MIN==3.27E+01 MAX= 2,87E+01 Ci=5.00E+00

(a)
Fig. 5(a). Numerical (top panels) and analytical (bottom panels) for enclosed (left panels) and semi-closed (right
panels) streamfunctions with I'? = 80, 7 = 0.2.

C

o)

= ek pyg ke e



problem
ablished.
poundary
s sets of
rocess of
that are
N matrix

ng coasts
rculation
integral.

osed (right

E. Ozsoy et al. / Multiply connected ocean domains

MIN=-8.75E+03 MAX= 8.76E+03 Ci=1.00E+03 MiN=—8.75E+03 MAX= 6.76E+03 Cl=1.00E+03

(b)
Fig. 5(b). Same as in Fig. 5(a) for vorticity.

The modified capacitance matrix formulation is no longer feasible under these circumstances
and alternative formulations like the circulation matrix formulation become necessary.

Another approach is to map the physical domain to a more regular domain. For simply
connected domains a capacitance method is no longer required, but for multiply connected
domains the advantages of regular computational domains and a capacitance method can be
combined with advantage.

In our determination of consistency conditions the essential additional information from

_ higher-order terms was a kinematic condition (2.8b), namely no first-order fluxes across coastal

boundaries. This fact gives us clues as to the limitations of the uniform asymptotic assumption,
implicitly made in all previous derivations of consistency conditions for this problem. A
parametrization of the dissipation of the form f=k V2u leads to the possible formation of
lateral boundary layers breaking the uniform asymptotic assumption; thus consistency condi-
tions in formulation using such parametrizations require revision.
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! In our approach the ocean is inviscid in the large energy containing scales and in the
‘ numerical model we have used a high wavenumber vorticity sweeper, the Shapiro filter, that
does not develop boundary layers; nonetheless limitations remain. The idealization of coasts as
vertical solid cylinders has additional obvious limitations. Certainly in this and similar models
the intent is not to resolve coastal circulations, but to include the dominant effects of the
lateral boundaries in the interior of the ocean. Further study is required to assess the effects of
lateral boundary layer circulations in the presence of realistic coastal geometries to the interior

ocean circulation.

Appendix A. Solvability of boundary value problem (2.11)-(2.13)

For convenience we drop the modal index [m] in this section. Let ¢, denote a particular
solution * of (2.11), (2.12a)—(2.12d) and (2.13a) with ¢, = 0 on C;, where i runs over all closed
coastal boundaries for baroclinic modes and all island boundaries for barotropic modes. We
introduce the influence functions &, defined as the solution to

V2g, =N¢;, (A.1)
taking the value 0 at all boundaries of
solution to (2.11)—(2.13) of the form

g = l/’p + Zaid)i'

D except at C; where it takes the value 1. We propose a
(A2)

The function (A.2) satisfies (2.11) and (2.12a)—(2.12d) for arbitrary coefficients «; and it will

satisfy (2.12¢) and (2.13b) provided

y(t) = V-t dI + Yo, § Vo, i dl,
G i G
where j has the same range as the index i. For convenience, we rearrange this system of linear
equations for a; in the form

Z'?j,i ai=7j(t) _¢Cy¢p'ﬁ dl, (A3)

where

9= 96c _v¢,. A dl (A.4)

are the elements of the circulation matrix representing the circulation induced by ¢; on the
boundary C;. The linear system of equations (A.3) has a unique solution provided the
circulation matrix is nonsingular. Below we prove a little bit more; namely, this matrix is

3 This is not the same particular solution as defined in (3.6).
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positive definite. To this end let us substitute the auxiliary function ¢ =X,B;¢, in the Green
first identity

[ [(V6) + 67| da= [ ¢ Ve-4 a1, (A.5)
D aD

where 9D is the boundary of D, to obtain the relation
19,88, = [ |(V6)'+ (16)7] da, (A.6)
i,J

where j, as above, has the same range as the index i.

For points in the unit sphere ;82 =1 the right-hand side of (A.6) is bounded away from
zero if either (a) A # 0 or (b) A =0 and U ,C, # aD. That is, the circulation matrix ¥, for these
two cases is positive definite. Before giving the proof, notice that (a) and (b) are satisfied in the
baroclinic and barotropic boundary problems (2.11)-(2.13), respectively.

If (a), ¢ is not identically null in D, since it is continuous in D and up to the boundary,
¢ =B; in C; and there is an i with B, + 0. It follows now that the second term in the right-hand
side of (A.6) is bounded away from zero. If (b), the function ¢ is not a constant in D, since it is
different from zero at some closed boundary and zero at a boundary which is not closed. Since
¢ is not a constant, there is a neighborhood in D for which V¢ is not null; and the first term in
(A.6) is bounded away from zero.

The exceptional handling of the barotropic boundary value problem for enclosed basins
stems from the fact that for this case the solution to the homogeneous problem with ¢ equal to
a constant has zero circulation; thus if the circulation matrix is extended to include the outer
closed boundary, then it is singular. Our approach reduces the barotropic enclosed basin
problem to an equivalent barotropic open basin.

We can concisely summarize this appendix as follows. Baroclinic quasigeostrophic circula-
tions map one-to-one to the corresponding baroclinic streamfunction values at closed coastal
boundaries, and island barotropic quasigeostrophic circulations map one-to-one to barotropic
streamfunction values at island boundaries.

Appendix B. Construction of the extended capacitance matrix

The matrix G, is conveniently partitioned in blocks, each block associated with a coastal
boundary segment. For each discrete closed boundary C,« we associate to it the set of all
interior points C;, of D, adjacent to Cyx as in Section 3.3. Its union, denoted again by
Ci=VU,_, uCi has M,=|C2| grids points. The union of all coastal boundaries is
denoted by &, =(U,_, 8, )Ju(U,_, ,C,.).

With B, = ®,(i, ), W,= w,(I), we can write (3.7) in the form

w()=yvr (i) + X B W, (B.1)

legl

For each outer coast segment S i and each closed coastal segment C ».x Substituting (B.1) in
(3.2b) yields after some arrangement

Z (Bim,l_Bim+l,1)I/I/l=rk,im’ (B.2)
legl
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(a)
Fig. 7(a). Numerical (left panels) and analytical (right panels) streamfunction for I’ 2-10,7=0.6 (top), [* =10, =
0.2 (middle), I'? = 50, # = 0.2 (bottom).
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—1.87E4+02 1.40E402 1.80E+O01 _2.026402 1.45€+02 1.60E+01

—1.50E+02 6.38E+01 1.60E+01 _1.84E402 6.20E+01 1.80E+01

~7.53E+02 1.02E+03 1.28E+02 ~7.46E402 1.10E+03 1.286+02
(b)
Fig. 7(b). Same as in Fig. 7(a) for vorticity.
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Fig. 10. Nondimensional streamfunction for the Eastern Levantine Mediterranean basin.

where the residual is given by
Tri, = _(¢}$(im)—¢;(im+l))' (B.3)

For each boundary segment S, , there are precisely |S,,|—1or |C,, | -1 relations (B.2).
For each outer coast segment the first point in the segment takes the value of its closest open
boundary segment (3.2¢), i.e.,

E Bi,,II’Vl =T ko (B.4)
legy
where
Tri, = _‘b:(il) + (¢0)h(i)' (B.5)

For each island C, , substitution of (B.1) in (3.3b) yields after some arrangement
Z ( Z B;,— Z Bi,z)Wl =T (B.6)
legl Vi€, ieCly
where the residual is given by
r=- T | T ufi- ¥ ufi) (8.7
legf Vi€, ieCp,

Equations (B.2), (B.4) and (B.6) form (3.9). In the code implementation each block can be
assembled as in [14] after the terms in the left-hand side of (B.6) arising from contributions
from interior grid points C,fjk, omitted in [14], are included.
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