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ABSTRACT

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and
repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic
ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across
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studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data
collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number
of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic
toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more com-
prehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide
impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the lim-
ited scope of basic ecotoxicological studies.
This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate
taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work sup-
ports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural popu-
lations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques
make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining
these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights
into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance
and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological
invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility
and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and
minimum annotation checklists to ensure that research results are findable, accessible, interoperable
and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and
holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisa-
tions and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health
approach.

Key words: animal model, ecotoxicology, environmental risk assessment, freshwater and marine invertebrates, innovative
methods.
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I. INTRODUCTION

Invertebrates account for the largest number of species in
marine and freshwater ecosystems. According to current
estimates, of the �6.7 million invertebrate species, 16%
(1.1 million) live in marine and 2% (150,000) in freshwater
environments, where they have colonised a large spectrum
of ecological niches (Collier, Probert & Jeffries, 2016). This
colonising ability is closely linked to their vast diversity,
accompanied by unique biological characteristics, including
possession of large numbers of pluripotent adult stem cells
(ASCs; Rinkevich et al., 2022) and the ability to regenerate
lost body parts, even up to whole-body regeneration in
some cases (Rinkevich et al., 2007b). Molluscs and crustaceans
are the richest taxa in terms of species numbers in the marine
environment (Appeltans et al., 2012), while insects are the
richest invertebrate taxon in freshwater habitats. Aquatic
invertebrates perform critical ecological functions in all
aquatic ecosystems (Palumbi et al., 2009; Macadam &
Stockan, 2015). They provide a range of ecosystem services,
including filtering water (Ostroumov, 2005), processing
organic matter (Bart et al., 2020), ecosystem engineering
(Howell et al., 2016; Angiolillo & Canese, 2018), recycling
nutrients (Lohrer, Thrush & Gibbs, 2004; Atkinson et

al., 2017), participating in the carbon cycle (Tue et al., 2017),
and playing key roles in mitigating natural risks [e.g. dissipa-
tion of wave energy that might impact shorelines (Ferrario et

al., 2014; Wiberg et al., 2019)]. In addition, they are sources
of ‘blue food’ (edible aquatic organisms), biomolecules and
biomaterials of economic relevance, especially in the pharma-
ceutical industry (Datta, Talapatra & Swarnakar, 2015).

Anthropogenic pollutants ultimately reach the aquatic
environment and cause a deleterious impact on freshwater
and marine ecosystems (Häder et al., 2020), leading to
large-scale biological impacts that may culminate in the
extinction of some species (Baines et al., 2021). Eventually,
these pollutants may reach human populations through the
food chain (Adeel et al., 2017; Lecomte et al., 2017). The
effects of legacy pollutants [e.g. polycyclic aromatic hydro-
carbons (PAHs), dioxins, polychlorinated biphenyls (PCBs),
pesticides, and heavy metals], and newly emerging contami-
nants [e.g. pharmaceuticals, and microplastics and nanoplastics
(MNPs)] are usually investigated with in vitro and in vivo toxic-
ity tests, which may be performed on single-species model
organisms or at community levels. These tests are necessary
for setting accurate toxicity thresholds and identifying toxic-
ity mechanisms or pathways. They form part of the prospec-
tive and retrospective assessment tools required for the
market authorisation of new compounds or characterisation
of the causes of adverse effects. Commonly used in vitro tests
have recently been reviewed by Rosner et al. (2021).

The immense diversity and abundance of aquatic
invertebrates, their relatively simple body organisation,
small size, reduced genetic complexity, and high sensitivity
to a broad spectrum of chemical compounds have resulted
in their widespread use in ecotoxicological studies (Lagadic
&Caquet, 1998) and their inclusion in international guidelines

for ecotoxicity testing. In addition, apart from cephalopods,
they are not included in EU legislation on animal research,
such as Directive 2010/63/EU on the protection of animals
used for scientific purposes. Furthermore, the ease of rearing
many aquatic invertebrates under controlled laboratory
conditions, their high fecundity, and their short lifespans
enable rapid in vivo testing and the potential for multi-genera-
tional tests (e.g. to investigate epigenetic effects on unexposed
offspring). Furthermore, the rearing of these animals in
laboratories reduces the use of natural populations (Collier
et al., 2016). Therefore, numerous biomarkers based on
aquatic invertebrates have been developed for (eco)toxicity
testing (Tosti & Gallo, 2012; L�opez-Pedrouso et al., 2020;
Trestrail, Nugegoda & Shimeta, 2020). Aquatic invertebrates
also can successfully replace vertebrates in various tests, as
demonstrated by their integration into national and interna-
tional guidelines. Short-term toxicity tests on invertebrates
are mandatory under regulation 1907/2006/EC, better
known as the REACH (Registration, Evaluation, Authorisation
and Restriction of Chemicals) regulation, and in long-term tox-
icity studies for substances for which production exceeds
100 tons/year (Tarazona et al., 2014).

There are, however, important shortcomings in terms of
environmental relevance associated with the use of laboratory-
bred aquatic invertebrates. Specifically, extrapolation from
controlled laboratory conditions to natural environments is
often difficult as many parameters are not taken into account.
These include: (i) inter-species variation in toxicity sensitivity
associated with substance movement through food webs and
potential biomagnification and biotransformation; (ii) syner-
gistic impacts, which might also be affected by the alteration
of physical attributes of the experimental animals; (iii) life
traits associated with previous exposure or the transgenera-
tional inheritance of epigenetic signatures due to exposure
of previous generations. Additional doubts can be raised
regarding which species should be considered ‘gate-keepers’
(and thus used for different trophic-level ecotoxicity tests)
due to species-specific sensitivity to pollutants (Chaumot
et al., 2014). These considerations, together with legislation
that minimises animal use [e.g. REACH regulations, 2006;
bans on animal testing, 2013; the ‘3 Rs’ principle of
Replacement, Reduction and Refinement of animal use in
research (Burden et al., 2015)], encourage the development
of alternatives to in vivo toxicity testing based on multiple
model organisms and endpoints (Rosner et al., 2021). In
addition, the use of omics and high-throughput techniques
that allow extrapolation from responses at the cellular level
to effects on whole organisms, populations, ecosystems or
among species, must be accompanied by computational
models (Brockmeier et al., 2017; Vinken et al., 2017;
Sakuratani, Horie & Leinala, 2018). Approaches that pre-
dict endpoint information for one substance using
data from another structurally similar substance (source
substance[s]), termed ‘read-across’, are also increasingly
available and accepted for regulatory purposes. Most model
organisms for both in vivo and in vitro tests are chosen to rep-
resent the many phyla and ecosystems in the aquatic

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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environment. The aquatic invertebrate models used most
widely in the various regulatory test guidelines and reported
in ecotoxicological studies include molluscs, arthropods, cni-
darians, and annelids. Other taxa such as sponges,
flatworms, nematodes and tunicates are poorly represented
(Fig. 1). In this review, we describe the common aquatic inver-
tebrate taxa used in ecotoxicological studies and pollution
monitoring, emphasising the value that underrepresented taxa
could add to provide a more comprehensive understanding of
the impact of pollution on the aquatic environment.

II. USE OF STANDARDISED TESTING IN
CHEMICAL RISK ASSESSMENT AND WATER
QUALITY CONTROL

Work on the safety of pesticides and chemicals began in
1971, following establishment of the Organisation for
Economic Cooperation and Development (OECD) Environ-
ment Committee. The OECD Mutual Acceptance of Data
(MAD) agreement on the assessment of chemicals is an essen-
tial component of the worldwide standardisation of

methodologies for chemical safety (OECD, 1981). The
OECD test guidelines (TG) programme develops guidelines,
which are published online (Rasmussen et al., 2019). An
advantage of MAD has been a reduction of unnecessary ani-
mal testing because substances only need to be tested once
rather than in every country of notification. The 3Rs princi-
ples for animal experimental usage (Russell & Burch, 1959)
was influential on EU legislation for regulations to protect
animals used in research and other scientific purposes in
1986. The 3Rs subsequently was made a legal requirement
in Directive 2010/63/EU on the protection of animals used
for research purposes. A key aspect of the resulting replace-
ment of vertebrates with invertebrates has been a dramatic
increase in the use of the latter in research and chemical
safety assessments (see Table 1 for the OECD TGs related
to using invertebrates in the testing and assessment of chemicals).
There are few ethical guidelines governing the use of inverte-
brates in science (Drinkwater, Robinson &Hart, 2019), other
than their ability to feel pain or demonstration of advanced
cognition. Scientific organisations like the Association for
the Society of Animal Behaviour publish some rules for using
invertebrates in research (ASAB, 2018). However, there
remain differences among countries in the legal protection

Fig. 1. Phylogenetic tree showing the number of marine (yellow numbers) and freshwater (white numbers) species in the various taxa
retrieved, from WoRMS (2022) and Balian et al. (2008), respectively; the total number of publications in the domains of
ecotoxicology, toxicology and pollution (green numbers) in the last 10 years (see Q1 in Table S1 for search string); and the number of
publications based on omics technologies in the domains of ecotoxicology, toxicology and pollution (black numbers) in the last
10 years (see Q2 in Table S1 for search string). Data were obtained from a search of Web of Science for the search terms listed in Q1
and Q2 on 31 December 2021.
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Table 1. Standardised regulatory tests utilising aquatic invertebrates.

Phylum Species Tests Guidelines References

Arthropoda Chironomus dilutus Acute toxicity test OECD Test No. 218–219 OECD (2018)
Sediment-water life-
cycle toxicity test

OECD Test No. 233 OECD (2005)

Bioaccumulation test ASTM E1688-19 ASTM (2020)
Multigeneration test for
assessment of
endocrine-active
chemicals

OECD Test No. 218-219 OECD (2018)

Daphnia magna Acute toxicity test EPA OCSPP 850.1010 EPA (2016a)
Immobilisation OECD Test No. 202 OECD (2004)
Chronic toxicity test EPA OPPTS 850.1300 EPA (2016f)
EC50 ASTM E1193-20 ASTM (2016)

Daphnia magna, Daphnia pulex Chronic toxicity test:
reproduction test
(male induction)

OECD Test No. 211 OECD (2018)

Gammarus fasciatus Acute toxicity test EPA OCSPP 850.1020 EPA (2016b)
Gammarus pseudolimnaeus Acute toxicity test EPA OCSPP 850.1020 EPA (2016b)
Gammarus lacustris Acute toxicity test EPA OCSPP 850.1020 EPA (2016b)
Hyalella azteca Toxicity test ISO 16303 ISO (2013)
Leptocheirus plumulosus Chronic toxicity test ASTM E1367-03 ASTM (2014)
Rhepoxynius abronius Chronic toxicity test ASTM E1367-03 ASTM (2014)
Ampelisca abdita Chronic toxicity test ASTM E1367-03 ASTM (2014)
Eohaustorius estuarius Chronic toxicity test ASTM E1367-03 ASTM (2014)
Mysidae Acute toxicity test EPA OCSPP 850.1035 EPA (2016c)
Penaeidae Acute toxicity test EPA OCSPP 850.1045 EPA (2016d)
Amphiascus tenuiremis (Copepoda) Acute lethal toxicity ISO/DIS 14669 ISO (2007)
Nitocra spinipes (Copepoda) Acute lethal toxicity ISO/DIS 14669 ISO (2007)
Tisbe battagliai (Copepoda) Acute lethal toxicity ISO/DIS 14669 ISO (2007)
Acartia tonsa (Copepoda) Acute lethal toxicity ISO/DIS 14669 ISO (2007)

Mollusca Crassostrea virginica Acute toxicity test (shell
deposition)

EPA-OPPTS 850.1025 EPA (1996)

Acute toxicity test
(embryo-larval)

EPA OCSPP 850.1055 EPA (2016e)

Bioconcentration
factors

EPA OCSPP 850.1710 EPA (2016g)

Acute toxicity test
(embryo)

ASTM E724-98 ASTM (1998)

Bioconcentration test ASTM E1022-94 ASTM (1994)
Crassostrea gigas Acute toxicity test

(embryo-larval)
EPA OCSPP 850.1055 EPA (2016e)

Acute toxicity test
(embryo)

ASTM E724-98 ASTM (1998)

Bioconcentration test ASTM E1022-94 ASTM (1994)
Mercenaria mercenaria Acute toxicity test

(embryo-larval)
EPA OCSPP 850.1055 EPA (2016e)

Acute toxicity test
(embryo)

ASTM E724-98 ASTM (1998)

Mytilus edulis Acute toxicity test
(embryo-larval)

EPA OCSPP 850.1055 EPA (2016e)

Mytilus edulis Acute toxicity test
(embryo)

ASTM E724-98 ASTM (1998)

Mytilus edulis Bioconcentration test ASTM E1022-94 ASTM (1994)
Pecten sp. Bioconcentration test ASTM E1022-94 ASTM (1994)
Unionidae Toxicity test (glochidia

and juvenile)
ASTM E2455-05 ASTM (2005)

Bivalvia In-situ field bioassays ASTM E2122-01 ASTM (2001)
Potamopirgus antipodarum Reproduction test OECD, Test No. 242 OECD (2016a)
Lymnaea stagnalis Reproduction test OECD, Test No. 243 OECD (2016b)

Annelida Lumbriculus variegatus Toxicity test using
spiked sediment

OECD, Test No. 225 OECD (2007a)

(Continues on next page)
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afforded to invertebrates used in research. For example, the
UK does not have the same laws regarding the euthanasia
of crustaceans as New Zealand (Ministry for Primary
Industry, 2017).

In parallel with chemical legislation, pollution regula-
tion and environmental protection legislation were also
developed. In October 2000, the Directive 2000/60/
EC, also known as the Water Framework Directive
(WFD; https://ec.europa.eu/environment/water/water-
framework/info/intro_en.htm), was adopted, forming a
framework for community action in the field of water policy.
The WFD also places various international obligations on
member states regarding the protection of sea waters from
pollution, including compliance with: (i) the Conventions
on the Protection of the Baltic Sea Environment (signed in
Helsinki on 9 April 1992 and confirmed by Council resolu-
tion 94/157/EEC); (ii) the Convention on the Protection of
the Northeast Atlantic Marine Environment, signed in Paris
on 22 September 1992 and confirmed by Council Decision
98/249/EEC; (iii) the Convention on the Protection of the
Mediterranean Sea against Pollution, approved by Council
Decision 77/585/EEC signed in Barcelona on 16 February
1976, and the Convention against pollution from land-based
sources signed in Athens on 17 May 1980 [83/101/EEC
(WFD 2000)].

In addition, the maritime policy of the EU is included in
the EC Marine Strategy Framework Directive (Directive
2008/56/EC, June 2008), which established a framework
for the domain of community action in maritime environ-
mental policy (Marine Strategy Framework Directive, 2008).
TheUnitedNations 2030Agenda for SustainableDevelopment
also addresses water quality and pollution viaGoal 14, which
aims to establish the conservation and sustainable use of the
oceans, seas, and marine resources (https://sdgs.un.org/
goals/goal14). Goal 14.1 aims ‘by 2025, [to] prevent and
significantly reduce marine pollution of all kinds, in particular

from land-based activities, including marine debris and
nutrient pollution’.
To fulfil the goals of both chemical legislation and the

WFD, there is an urgent need for tools for the assessment of
environmental hazards and risks to support responsible deci-
sions that enable sustainable development. Invertebrate tests,
both those standardised through OECD TGs (see Table 1),
and those using non-standard species, are required to cap-
ture the breadth of potential effects and impact of pollutants,
and to span the diversity of species and ecosystems impacted
by the >85,000 chemicals currently available in commercial
markets, only a small fraction of which has been evaluated by
US regulators (Gross & Birnbaum, 2017). Similarly, in the
EU, many of the 27,000 registered chemicals (i.e. those pro-
duced or imported at volumes >1 tonne/annum) have yet to
be evaluated. By 2027, the European Chemicals Agency’s
(ECHA) Integrated Regulatory Strategy aims to clarify
which registered compounds are low priority for additional
regulatory action and which are high priority for regulatory
risk management or data collection (ECHA, 2021).

III. KEY AQUATIC INVERTEBRATES IN
STANDARDISED AQUATIC ECOTOXICOLOGY/
MONITORING

(1) Arthropoda

Over 80% of known animal species on Earth are arthropods,
occupying crucial positions in aquatic ecosystems as
detritivores, herbivores, omnivores, and carnivores
(Ødegaard, 2000). They are vital components of healthy
ecosystems and are key indicators of environmental
change and pollution (Chakravarthy & Sridhara, 2016).
Arthropods are highly recommended for aquatic pollution
studies due to their short life cycle, high reproductive

Table 1. (Cont.)

Phylum Species Tests Guidelines References

Acute toxicity tests ASTM E729-80 279–280 ASTM (1996)
Bioaccumulation tests EPA-823-R-00-001 (v. 1);

EPA-823-R-00-002 (v2)
EPA (2000)

Tubifex tubifex Bioaccumulation tests EPA-823-R-00-001 (v.1);
EPA-823-R-00-002 (v.2)

EPA (2000)

Polychaeta spp. Acute, chronic, and
lifecycle aquatic
toxicity tests

ASTM E1562-00 ASTM (2000)

Polychaeta spp. Sediment toxicity tests ASTM E1611-07 ASTM (2007)
Nereis spp. Bioaccumulation tests EPA-823-R-00-001 (v. 1);

EPA-823-R-00-002 (v.2)
EPA (2000)

Echinodermata Sea urchin Fertilisation test EPA-821-R-02-014 EPA (2002)
Sand dollar Fertilization test EPS 1/RM/27 Environment

Canada (2011)
Sea urchin Short-term toxicity test ASTM E1563-21 ASTM (2021)

Nematoda Caenorhabditis elegans Growth, fertility and
reproduction

ISO 10872:2020 ISO (2020)

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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potential, wide distribution, and representativeness of
plankton and benthic fauna in the littoral and intertidal
zones where most chemical spills occur (Lee, 1977). Their
exoskeleton-moulting process, which is hormone dependent, is
an important endpoint for ecotoxicological studies, serving as
a good indicator of endocrine-disrupting/reproductive disor-
ders induced by chemicals such as industrial chemicals and
pesticides (Peterson, Kashian & Dodson, 2001; Zou, 2005;
Mensah, Muller & Palmer, 2012; OECD, 2018).

Among the arthropods, insects (around 76,000 species;
Balian et al., 2008) and crustaceans (67,000 species; Ahyong
& Huang, 2020) are the most prominent groups in aquatic
environments. Freshwater aquatic insects live all or part of
their lives in lentic (still) or lotic (running) water systems (Starr
& Wallace, 2021). The EPT (Ephemeroptera, Trichoptera,
Plecoptera) index, based on pollution-intolerant taxa, is
widely used in freshwater environmental studies (Lenat &
Penrose, 1996) as a common metric for environmental
health, water quality, ecosystem integrity, and response to
pollution (Blöcher et al., 2020) Additionally, acute toxicity is
also frequently tested on the early developmental stages of
sensitive aquatic insects (Kreutzweiser et al., 2008; Beketov
et al., 2013; Camp & Buchwalter, 2016). Many crustacean
species are widely employed in both freshwater and marine
ecotoxicology [American Public Health Association (APHA),
American Water Works Association (AWWA), World
Economic Forum (WEF), 1995-Standard Methods for the
Examination of Water and Wastewater; Pane et al., 2012],
as they are strongly affected by environmental stressors such as
pollution by light, nutrients, and toxins (Wacker &
Harzsch, 2021). Among the crustaceans, Cladocera,
Copepoda, and Amphipoda are the most extensively used
taxa in bioassays.

Cladocera (Diplostraca), commonly known as water fleas,
are small crustaceans widely used as bioassay organisms
when evaluating the impact of toxic substances (Sarma &
Nandini, 2006). Cladocera reproduce by cyclic parthenogen-
esis when conditions are suitable. When conditions worsen,
males and resting eggs are produced. Ernest Warren intro-
duced Daphnia magna as a model organism for toxicity stud-
ies, laying the groundwork for the field of ecotoxicology
(Warren, 1900). Since then, D. magna has become the most
widely used crustacean in ecotoxicity tests and is consid-
ered the standard bioassay organism by many academic insti-
tutions and governmental organisations (Siciliano et al., 2015).
Various chemicals have been examined on cladocerans,
including heavy metals (Sadeq & Beckerman, 2019), pesticides
(Toumi et al., 2015), nanomaterials (Ellis et al., 2021a), micro-
plastics (MPs) (Frydkjær, Iversen & Roslev, 2017), and natural
toxic substances such as the cyanobacterial toxin microcystin
(Herrera, Echeverri & Ferrao-Filho, 2015). In early life stages,
Daphnia is sensitive to virulence traits and is therefore used to
study interaction with bacterial pathogens (Ebert, 2008). The
genome of D. pulex was sequenced in 2007 by the Daphnia

Genomics Consortium (DGC), revealing that it has the highest
similarity to human genes among arthropods (http://
wfleabase.org/). The use ofDaphnia (Fig. 2A) in genetic screen-
ing could facilitate an understanding of the intricate control of
genes and of the cellular and molecular processes that respond
to environmental challenges (Siciliano et al., 2015). Since D.

magna naturally occurs only in temperate regions, toxicity test-
ing with this species conducted in tropical regions has drawn
criticism, as D. magna experiences low reproduction and high
mortality rates at tropical temperatures (Mark & Solbé, 1998).

Copepoda form the largest crustacean group with over
13,000 known species (Longhurst, 1985).Most copepod species

Fig. 2. (A) Daphnia sp. (B) Gammarus fossarum. (C–H) Whole zooplankton community crude-oil acute toxicity (LC50) test using
experimental microcosms. (C) Experimental setup. (D–H) Zooplankton species exposed to crude oil in concentrations of
50–1000 ppm (v/v) for 48 h. (D) Sapphirina sp. (E) Oithona nana. (F) Oithona plumifera. (G) Pseudoevadne tergestina. (H) Cirripedia nauplius.
Black scale bar = 100 μm; red scale bar = 5 mm.

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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are omnivorous, feeding on a range of macroinvertebrates,
protozoa, algae, and bacteria. Copepods go through six nau-
pliar phases and six copepodite stages throughout develop-
ment. Reproduction is sexual, and most species have resting
stages that permit survival during periods of poor environ-
mental conditions. These varied traits of copepods make
them excellent model organisms for ecotoxicological studies
(Kulkarni et al., 2013). The calanoid copepod Acartia tonsa

and the harpacticoid species Amphiascus tenuiremis and Nitocra

spinipes have been recommended by the International Organi-
sation for Standardisation (ISO, 2007) and OECD (2007b) for
the evaluation of chronic and acute lethal toxicity of marine
contaminants such as herbicides (Noack et al., 2016), sediment
organic contaminants (Macken et al., 2008), discharge waters
(Sonmez, Sivri & Dokmeci, 2016) and oestrogens (Andersen,
Halling-Sørensen & Kusk, 1999). Other studies have stressed
the importance of using local species to ensure the ecological
relevance of such tests (Butler et al., 2020). Marine copepods
have also been utilised as model organisms for the acute and
chronic testing of crude oil and chemical dispersants (Almeda
et al., 2013; Fig. 2C–H), with the regulation of their cyto-
chrome P450 (CYP) genes being one of the best-known tests
(Han et al., 2017).

Amphipods are ubiquitous crustaceans that include nearly
10,000 marine and freshwater species. They cover a wide
trophic range as herbivores, detritivores, and predators,
while providing an important food source for many organ-
isms higher in the food chain. Amphipods are very sensitive
to a wide range of pollutants. Experiments with amphipods
include lethal concentration 50% (LC50) and effect concen-
tration 50% (EC50) assays for the testing of chemicals
(Alonso, De Lange & Peeters, 2010). Amphipods are also
used in the Polychaeta/Amphipoda (P/A) index, which mea-
sures the differential sensitivity of these two taxonomic
groups (Dauvin, 2018). The genus Gammarus (Fig. 2B) is
widely distributed in freshwater and marine ecosystems and
has been extensively studied for its responses to various
stressors and pollutants (Barnard, 1983). Biomarker analyses
on Gammarus spp. have been used to assess the effects of anti-
oxidant responses, behaviour, cellular damage, defence
mechanisms, energy reserves, endocrine responses, iono/
osmoregulation mechanisms, and lysosomal responses
(Kunz, Kienle & Gerhardt, 2010; Sroda & Cossu-Leguille,
2011; Arce Funck et al., 2013; Gismondi & Thomé, 2014;
Trapp et al., 2014; Mehennaoui et al., 2016; Gouveia et

al., 2018; Batista et al., 2021). In addition, multigenerational
studies (Geffard et al., 2010; Vigneron et al., 2019; Cribiu et

al., 2020) have led to a more ecologically relevant under-
standing of the impact of toxicants on ecosystems (Minguez
et al., 2015). Recent advances in transcriptomics (Caputo et

al., 2020) and proteomics (Trapp et al., 2014, 2016; Gouveia
et al., 2019) have enabled the identification of new
biomarkers, including reference genes for quantitative PCR
(qPCR) data normalisation (Mehennaoui et al., 2018), and
microbiome (Gouveia et al., 2020). These studies have con-
tributed to a better understanding of the physiological and
molecular responses of non-model species to contaminants

and the pathways underlying detoxification (Armstrong
et al., 2019).
Other crustaceans commonly employed in ecotoxicological

studies and environmental biomonitoring include decapods
(Reynolds & Souty-Grosset, 2011), barnacles (Da Silva, Ridd
& Klumpp, 2009), brine shrimps (Hnamte, Kaviyarasu &
Siddhardha, 2020), notostracans (Lahr, 1997), and isopods
(Reboleira et al., 2013). The use of decapods in toxicological
tests is likely to be amended following recent observations of
their ability to feel pain and distress (Passantino, Elwood &
Coluccio, 2021). As an alternative to ecotoxicological testing,
the development of in silico models in crustaceans appears to
be a promising method for predicting chemical toxicity,
which can offer a practical and trustworthy tool for evaluat-
ing environmental risk and ranking chemicals for testing
(Cao et al., 2018; Varsou et al., 2021).

(2) Mollusca

Mollusca are the second largest phylum in the Kingdom
Animalia (Fig. 1) and include seven clades: Aplacophora,
Monoplacophora, Polyplacophora, Bivalvia, Gastropoda,
Cephalopoda, and Scaphopoda. Molluscs are essential
components of the food chain and play an important eco-
logical role in structuring benthic communities due to their
ubiquitous distribution (Fortunato, 2015). As well as being
highly sensitive to pollution exposure (Mouthon & Charvet,
1999), molluscs show a variety of responses to toxic contam-
inants (Grabarkiewicz & Davis, 2008), have a rapid growth
index, short life cycle, wide distribution, different lifestyles,
bioaccumulation capability for a wide range of pollutants,
various life stages with different sensitivity, and can be main-
tained under laboratory conditions (EPA, 2003). Bivalves
and gastropods are recommended for standardised tests in
water and sediment quality assessment as bioindicators
(Table 1).
Most bivalves live at the water–sediment interface, exhibit

burrowing behaviours, and are filter feeders (McLeod,
Luoma & Luthy, 2008). These features lead them to accumu-
late various chemical pollutants including metals (Rzymski
et al., 2014; Shi et al., 2016; Yuan et al., 2020), PCBs (Dodoo,
Essumang & Jonathan, 2013; Milun et al., 2020), PAHs (Yap,
Shahbazi & Zakaria, 2012; Yoshimine & Carreira, 2012),
organochlorine pesticides (Tong et al., 2019), per- and poly-
fluoroalkyl substances (Cui et al., 2021), and pharmaceuticals
released into the environment (Gomez et al., 2021). Mytilus

edulis (Fig. 3A; Rosenberg & Loo, 1983), Pecten spp. (Fig. 3B;
Metian et al., 2007, 2008), Crassostrea gigas (Fig. 3C), and C.

virginica (Perrino &Ruez, 2019) are the recommended species
for the American Society for Testing and Materials (ASTM)
bioconcentration standard test (ASTM, 1994) designed to
assess the ability of an aquatic species to accumulate test
materials directly from the water. C. virginica is the standard
species for two other EPA test guidelines: an acute toxicity
test (OPPTS 850.1025; EPA, 1996) and a bioaccumulation
test (OCSPP 850.1710; EPA, 2016g). The ASTM standard
guide E2122-01 (ASTM, 2001) describes in situ bioassay

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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using caged bivalves as allowing more precise results about
the impact of pollutants in natural environments. Another
asset of bivalves is the differential susceptibility of their vari-
ous life stages to pollutants, and this is used by two standard
guides, ASTM E724-98 (ASTM, 1998) and OCSPP
850.1055 (EPA, 2016e). The procedures outlined in ASTM
E724-98 (ASTM, 1998) and ASTM E2455-05 (ASTM,
2005) describe how to obtain laboratory data regarding the
acute effects of test materials (individual chemicals; mixtures
in different environmental matrices) on embryos and larvae.

Gastropoda are the largest clade of molluscs (Frýda, 2021)
and in some ecosystems, they can represent 20–60% of the
total quantity and biomass of macroinvertebrates (Anderson
& Smith, 2000). Due to their sensitivity to a broad variety of
organic and inorganic chemicals, gastropods are widely used
as effective indicators of both water and sediment quality
(Tallarico et al., 2014; Leomanni et al., 2015, 2016) in environ-
mental risk assessment (OECD, 2010). Freshwater gastropods
have been utilised for laboratory studies on the effects of endo-
crine-disrupting chemicals (EDCs) on reproduction (OECD,
2010). In particular, the snails Potamopyrgus antipodarum and
Limnaea stagnalis were recommended as the standard species
for reproduction assays by the OECD (2016a,b), with this rec-
ommendation validated within the Conceptual Framework
for Endocrine Disrupters (OECD, 2018).

Besides ecotoxicological tests based on whole-organism-
related endpoints, additional molecular and cellular
biomarkers have been developed in molluscs. These include:
hepatopancreas metallothionein concentration for metals
(Lionetto et al., 2001; Lionetto, Caricato & Giordano, 2021),
oxidative stress biomarkers (depletion of intracellular
reduced glutathione; Lima et al., 2007), alteration of the
activity of antioxidant enzymes [e.g. glutathione peroxidase
(GPX), superoxide dismutase (SOD), and catalase (CAT);
Jena, Verlecar & Chainy, 2009], alterations of the lysosomal
system (Martínez-G�omez, Bignel & Lowe, 2015), induction
of lipid membrane peroxidation, cholinesterase inhibition
as a biomarker of neurotoxicity (Leomanni et al., 2015) and
vitellogenin induction as an EDC biomarker (Tran et al.,
2019). In addition, genotoxicity has been assessed using the
micronucleus assay applied in both laboratory and field
experiments to bivalves (Bolognesi & Fenech, 2012).

In recent years, research for alternatives to in vivo

approaches has led to the development of in vitro tools such
as primary cell cultures from various organs (Galloway &
Depledge, 2001; Nogueira et al., 2013; Yoshino, Bickham &
Bayne, 2013; Daugavet & Blinova, 2015) and larval stages
(Van der Merwe et al., 2010), allowing the use of cell cultures
as models for environmental contaminant testing, the analy-
sis of cellular responses to pollutants, and investigation of the

Fig. 3. (A–C) Mollusca. (A) Mytilus edulis. (B) Pecten maximus. (C) Crassostrea gigas. (D–F) Annelida. (D) Polychaeta, Eunicidae.
(E) Polychaeta, Opheliidae. (F) Leech, Hirudo verbana. (G–K) Nematoda. (G) Vasostoma sp., head. (H) Vasostoma sp., tail in female.
(I) Vasostoma sp. (J) Thershelingia sp. (K) Dorylaimopsis sp. am, amphid; bc, buccal cavity; cs, cephalic setae; mo, mouth opening; rp,
reproductive pore; ut, uterus. Black scale bar = 1 cm; red scale bar = 100 μm.

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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underlying mechanisms (Rinkevich, 1999, 2005a). Further-
more, adult stem cells have been identified (Vogt, 2012;
Jemaà et al., 2014; Deryckere & Seuntjens, 2018; Cherif-
Feildel et al., 2019; Rodriguez et al., 2020) increasing interest
in developing new tools that may lead to ecotoxicological
applications (Rosner et al., 2021).

(3) Annelida

Annelida is a phylum of over 25,000 species of segmented
worms that are found worldwide in various environments
(Fig. 1; WoRMS, 2022; Glasby & Timm, 2008; Aguado
et al., 2014; Glasby, Erséus &Martin, 2021). They can repro-
duce both sexually and asexually and exhibit high regenera-
tion potential, including the restoration of germ cells, cell
repair, regrowth of body parts, and whole-body regenera-
tion (Hyman, 1940; Berrill, 1952; Herlant-Meewis, 1964;
Bely, 2006, 2014; Dannenberg & Seaver, 2018; Zattara,
2020; Kostyuchenko & Kozin, 2021).

Polychaetes (Fig. 3D, E) are highly diverse marine worms
that are abundant in ocean sediments and also live in fresh-
water and shallow brackish waters (Verdonschot, 2015;
Jørgensen & Jensen, 1978; Niederlehner et al., 1984). They
have soft bodies, a characteristic segmented shape, and
occupy a wide range of habitats, including those in extreme
conditions (Glasby, 1999; Verdonschot, 2015; Magalhães et
al., 2021). They play an important ecological role in benthic
ecosystems through scavenging, filter-feeding, and predation
(Brusca & Brusca, 1990; Hickman & Roberts, 1994). They
are a crucial food source for organisms such as fish and wad-
ing birds (Verdonschot, 2015). Platynereis dumerilii is a well-
known polychaete species with several life phases and can
survive in polluted and acidic environments (see online
Supporting Information, Fig. S1; Fischer &Dorresteijn, 2004;
Fischer, Henrich & Arendt, 2010; Lucey et al., 2015;
Schenkelaars & Gazave, 2021). It is a dioecious, semelpa-
rous animal that can be bred efficiently in a laboratory
(Kuehn et al., 2019), producing numerous embryos for exper-
imentation and culture populations.

Polychaetes are commonly used in marine toxicity tests to
assess the impact of pollutants and toxic materials on sedi-
ments (Pocklington & Wells, 1992; Scaps, 2002; Bat, 2005;
Dean, 2008). More than 48 species of polychaetes are used
in standard toxicity tests (ASTM, 2000, 2007), with the six
species used most frequently being Neanthes arenaceodentata,
Nereis diversicolor, Nereis virens, Laeonereis acuta, Arenicola marina,
and Capitella teleta (Forbes, Andreassen & Christensen, 2001;
Christensen, Banta & Andersen, 2002). They are used for
both acute and chronic toxicity tests (Reish & Gerlinger,
1997) and to evaluate the effects of new and emerging
pollutants on reproductive, larval development, and beha-
vioural endpoints (Lewis & Watson, 2012). Polychaetes
can accumulate harmful organic compounds in their tis-
sues and are considered good indicators of bioaccumula-
tion (Caldwell et al., 2005; Janssen et al., 2010; Jørgensen
et al., 2005; Langston et al., 2005). The possible toxic
impacts of multi-walled carbon nanotubes (MWCNTs)

(Baughman, Zakhidov & de Heer, 2002) and MPs on
polychaetes has been studied, revealing neurotoxicity, activa-
tion of antioxidant defences, and alterations in energy-related
biochemical processes (Du et al., 2013; Hidalgo-Ruz et al.,
2012; Andrady, 2015). Exposure to MWCNTs and MPs
reduces the regenerative capacity of some polychaete species
(Leung & Chan, 2018). Despite their ability to accumulate
harmful materials, some polychaete species are considered
resistant to pollutants due to their positive responses to organic
enrichment. This results in the proliferation of numerous
opportunistic polychaete species and an increase in their abun-
dance after pollution events. By contrast, amphipods are more
sensitive to stress and have a higher death rate. To track signif-
icant alterations in benthic ecosystems caused by oil spills,
urban sewage outfalls, and organic matter enrichment, 23
countries use P/A ratio-based indices such as benthic opportu-
nistic polychaetes amphipods index (BOPA) and benthic
opportunistic annelida amphipods index (BO2A) in estuarine
and coastal environments (Dauvin, 2018).
Nearly 1100 species of freshwater oligochaetes exist

(Martin et al., 2008). About half of these are widely distributed
worldwide (Timm & Martin, 2015) while the rest have limited
distributions (Wang & Liang, 1997; Timm & Martin, 2015;
Verdonschot, 2015). Oligochaetes are commonly used in eco-
toxicological studies due to their abundance, cosmopoli-
tanism, and ability to accumulate toxic substances such as
metals (Helling, Reinecke & Reinecke, 2000; Corbi, Guil-
herme & Regiane, 2015; Gomes et al., 2017). The most com-
mon species used in toxicological studies are Pristina leidyi,
Branchiura sowerbyi, Lumbriculus variegatus, Tubifex tubifex, and
Allonais inaequalis (Lobo et al., 2016; Hurley, Jamie &
James, 2017; Neto et al., 2019, Felipe et al., 2020). L. variegatus,
T. tubifex and A. inaequalis are the most widely used species for
evaluating toxic effects caused by MPs and MWCNTs
(Castro et al., 2020; Scopetani et al., 2020; Silva et al., 2021).
Transmission electron microscopy showed that MWCNTs
do not penetrate cell membranes, and that toxicity caused
by ingesting them might result from metals solubilised from
the nanotubes (Mwangi et al., 2012). Ingestion of MPs did
not appear to affect survival and reproductive rate, but
this does not rule out the possibility of risks to biodiversity
(Koelmans et al., 2014; Barboza & Gimenez, 2015).
Leeches (Hirudinea) are a group of annelids with a variety

of life-history strategies and reproductive behaviours that are
primarily found in freshwater habitats, but also occur in
other habitats (Apakupakul, Siddall & Burreson, 1999; Sket
& Trontelj, 2008). H. medicinalis and H. verbana (Fig. 3F) are
perhaps the best-known species (Trontelj, Sotler & Verovnik,
2004; Trontelj & Utevsky, 2005) and are used in medicine and
research due to their ease of maintenance and well-charac-
terised physiology and behaviour (Sawyer, 1986; Grimaldi,
Tettamanti & de Eguileor, 2018; Baranzini et al., 2020). Studies
using the alkaline comet test on H. verbana haemocytes found
that exposure to MWCNTs causes stress and potential risks to
public health (Tice et al., 2000; Mihaljevi�c et al., 2009). In vitro
treatments of leech phagocyte cultures with MWCNTs
decreased cell proliferation, increased apoptotic events, and
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induced the production of amyloid fibrils and reactive
oxygen species (ROS), which are indicators of toxicity
induced by environmental pollutants (Girardello et al.,
2015a,b, 2017; Torres & Fadeel, 2013). Thus, H. medicinalis

and H. verbana are ideal species to conduct rapid in vivo and
in vitro environmental tests with innovative methods that uti-
lise molecular-based endpoints at the sub-cellular or cellular
level (Bod�o et al., 2020).

(4) Nematoda

Nematodes (Fig. 3G–K) are common in aquatic habitats,
mainly inhabiting sediments as free-living organisms
(Hogue, 1982; Heip, Vincx & Vranken, 1985; Decho &
Fleeger, 1988; Eckman & Thistle, 1988; Hodda, 1990;
Hugot, Baujard & Morandi, 2001; Van Gaever et al.,
2006; Mokievsky, Udalov & Azovsky, 2007; Gallucci, Moens
& Fonseca, 2009). Nematode distribution depends on the
physico-chemical properties of the sediments, climate,
oxygen and food sources (Lee et al., 1977; Bell, Watzin &
Coull, 1978; Montagna et al., 1983; Decho & Fleeger, 1988;
Blanchard, 1990; Rice & Lambshead, 1994; Brown et al.,
2001; Steyaert et al., 2003; Fonseca & Soltwedel, 2007; Lee
& Riveros, 2012; Braeckman et al., 2013). In intertidal areas,
some nematode species are also sensitive to the water content of
the sediment (Jansson, 1968; Steyaert et al., 2001). Nematodes
are important in bioturbation, bioirrigation and trophic pro-
cesses, and feed on a variety of resources, fromdissolved organic
matter to multicellular organisms, including other nema-
todes (Montagna, 1984; Moens, Verbeek & Vincx, 1999).
Most of them have digestive and nervous systems and are
dioecious. Despite being common, only 14% of estimated
free-living nematode species in marine habitats are currently
classified (Appeltans et al., 2012). Additional information on
nematode species is available online (Nemaplex, 2023).

Nematodes, as important benthic constituents and food
sources for many predators, play significant roles in the tro-
phic transfer of pollution from sediments, with some species
more susceptible to environmental stressors (Hägerbäumer
et al., 2015). In consequence, nematodes are emerging as
bioindicators for freshwater (Hägerbäumer et al., 2016) and
marine pollution (Ridal & Ingels, 2021), in single-species
and community composition tests. Community composition
tests require expertise in identifying genera and species,
although this can be circumvented by using molecular tools
(Av�o et al., 2017; Carta & Li, 2018; Knot et al., 2020) and
automated image recognition apparatus (e.g. FlowCAM;
Kitahashi et al., 2018), both of which have been shown to
be credible alternatives.

Most ecological research on nematodes as bioindicators in
the marine environment has focused on their responses to
heavy metals, hydrocarbons, and organic enrichment (Ridal
& Ingels, 2021). Studies have demonstrated species-specific
susceptibility to different metals and changes in the diversity
and abundance of some species in response to heavy metal
pollution (Bastami et al., 2017). Nematode genera have
shown differential tolerance to oil spills and PAHs, with some

demonstrating tolerance (e.g. Sabateria, Dorylaimopsis) and
others increased mortality (e.g. Encheliidae; Allouche et

al., 2020a). Different nematode species have also shown var-
iable susceptibility to crude oil or diesel pollution (Stark
et al., 2017; Monteiro et al., 2018). Studies of organic and/
or sewage-enriched pollution have shown inconsistent nema-
tode abundances (Bertocci et al., 2019; Sahraeian et al., 2020),
highlighting the need for additional pollution evaluation
metrics such as an index of trophic diversity based on nema-
tode trophic guild compositions (Kandratavicius et al., 2018).
Aquacultural pollution has also been found to affect nema-
tode assemblage compositions, with a shift from long-lived,
slow-growing genera to short-lived genera (Lacoste et al.,
2020). These experiments have demonstrated that some
genera are specifically tolerant to pollutants (e.g. Sabatieria
and Daptonema) while others are sensitive to pollutants
(e.g. Pomponema and Halalaimus) (Ridal & Ingels, 2021).
Nematode-based biomarkers have also been used to eval-
uate the effects of MNPs, demonstrating lethality in
adults, changes in brood size and embryo number, and spe-
cies-specific effects on population growth (Lei et al., 2018;
Mueller et al., 2020). Biochemical biomarkers have also been
successfully tested on nematodes, showing changes in enzy-
matic activities following exposure to various pollutants
(Allouche et al., 2020b; Hedfi et al., 2021).

Single-organism tests complement community-level
assessments of the impact of pollution. They allow a faster
evaluation of the impact of pollution under controlled condi-
tions, enabling the establishment of concentration–response
relationships and the identification of pollutant mechanisms
of action. Aquatic nematodes are challenging to cultivate
and therefore only a few freshwater and marine species are
used as models for pollution assessment (Moens & Vincx,
1998). To overcome this shortage, Caenorhabditis elegans, pri-
marily a soil inhabitant (Zullini, 1988), is used as a standar-
dised model in freshwater (Carresse et al., 2021) and soil
quality control (ISO 10872:2020). C. elegans has been tested
with various pollutants, including heavy metals, PAHs,
pesticides, endocrine disruptors, bacterial toxins, and nano-
materials (Hägerbäumer et al., 2016). Litoditis marina has been
proposed as a marine model due to its sensitivity to crude oil
and diesel pollution, pesticide pollution, and sodium dodecyl
sulfate (SDS) detergent pollution. Studies have used a wide
range of parameters to measure response to pollution,
including mortality assay, LC50, fecundity, egg deposition
time, abundance of eggs, embryonic and post-embryonic
development time, and adult sex ratio (Monteiro et al.,
2018; Oliveira et al., 2020; Francolino et al., 2021).

The low costs associated with nematode sampling should
encourage their inclusion in environmental pollution assess-
ment tests. However, the main obstacles to the large-scale
use of nematodes as ecological indicators include: (i) the lack
of useful cultivation protocols for individual species; (ii) the
scarcity of literature on individual nematode species; (iii)
the low number of taxonomists able to identify species; (iv)
the paucity of metabarcoding conducted on marine and
freshwater nematodes (excluding C. elegans); and (v) the
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absence of standardised effective metrics for each pollutant
type or pollutant assembly. Some of these difficulties might
be surmounted by the development of automated image rec-
ognition and improved DNA barcoding analysis techniques
for the rapid identification of species.

(5) Echinodermata

Echinoderms are marine invertebrates widely distributed
across all seas, including highly anthropogenically modified
areas. They are important representatives of many marine
ecosystems and frequently constitute the majority of the
benthic macrofauna. More than 7400 living species are
divided into five extant clades: Asteroidea (starfish; Fig. 4A),
Holothuroidea (sea cucumbers; Fig. 4B), Echinoidea (sea
urchins and sand dollars; Fig. 4C), Crinoidea (sea lilies and
feather stars; Fig. 4F), and Ophiuroidea (brittle stars and bas-
ket stars; Fig. 4H). Feeding strategies depend on taxon and
species and can include filter-feeding, carnivory, scavenging,
grazing, and omnivory. Crinoids are generally filter-feeders;
ophiuroids are carnivores, scavengers, and filter-feeders;
asteroids are predators; echinoids are grazers and omnivores;
and holothurians are scavengers and filter-feeders. Members
of this phylum share some features including pentaradial
symmetry in the adult stage, a water vascular system, a cal-
cium carbonate dermaskeleton, mutable connective tissue
and remarkable regeneration capabilities that can also be
used in reproduction (Wessel, 2018). In general, echinoderms
(excluding crinoids) produce feeding larvae (Fig. 4D), while
some asteroids, echinoids, and ophiuroids are direct devel-
opers (McEdward & Miner, 2001). They live in close contact
with substrates and sediments, and possess highly developed
and permeable external epithelia, normally used for respira-
tion and excretion. Due to these latter features, they are easily
exposed to various environmental pollutants (Sugni et al.,
2007). As deuterostomes, they share a rather close phylogenetic
relationship with vertebrates, suggesting the existence of shared
mechanisms of responses to environmental contamination.

Both sea urchins (Echinoidea) and sea cucumbers
(Holothuroidea) have high commercial value and are exten-
sively exploited (Kelly, 2005; Cirino et al., 2017; Hu et al.,
2021; Rubilar & Cardozo, 2021). Sea urchins are considered
ideal models for marine (eco)toxicological tests (Goldstone et
al., 2006; Gharred et al., 2016) as their embryos can sense
adverse effects related to a wide range of environmental
stressors, including metals and plastics (Pinsino et al., 2017;
Messinetti et al., 2018; Morroni et al., 2018; Bergami et al.,
2019; Oliviero et al., 2019), polluted sediments and ocean
acidification (Pagano et al., 2017; Dorey et al., 2018;
Bonaventura et al., 2021;Caetano,Pereira&Envangelista, 2021).
Accordingly, assessing the embryonic and larval development
of sea urchins under stress conditions is useful in monitoring
and risk assessment programs (EPA, 2002; Environment
Canada, 2011; Sartori et al., 2017; ASTM, 2021). Chronic
or sub-chronic short-term embryotoxicity tests for the
analysis of environmental quality have been used since
the 1960s, due to the accessibility and reliability of sea

urchin embryos and the speed with which these tests can
be conducted. The guidelines cover procedures for per-
forming short-term (48–96 h) laboratory assays on sea
urchin embryos using a variety of sea urchin species, such
as Arbacia punctulata and Strongylocentrotus droebachiensis from
the East Coast of the USA, Strongylocentrotus purpuratus,
S. droebachiensis, and Dendraster excentricus from the West
Coast of the USA, and Paracentrotus lividus (Fig. 4C) from
the Mediterranean. The ASTM (2021) guide also includes
procedures for the use of other echinoids (e.g. sand dollars).
Modifications to the standard procedures can be applied.
For example, the sea urchin embryotoxicity test, considered
to be a valuable tool for assessing the quality of sediments in
harbour areas, may result in flawed outcomes when based
exclusively on normal versus abnormal embryos. To overcome
this risk, several Integrative Toxicity Indices (ITIs) have been
developed and validated (Morroni et al., 2016; Bonaventura
et al., 2021). Among these, the ITI 4.0 index discriminates
strictly between developmental delay and morphological
defects from fertilised eggs to the gastrula stage (Bonaventura
et al., 2021). Notably, some sea urchin species are suffering
from increasing anthropogenic pressures in coastal environ-
ments, including intensive exploitation. As a result, the popu-
lations of species such as the European sea urchin P. lividus

(distributed from the northeastern Atlantic to the coasts of
the Mediterranean Sea) have recently collapsed, and these
species are becoming extremely rare in some regions
(Yeruham et al., 2015). In addition, the depletion of reproduc-
tive adults renders the procurement of an acceptable number
of wild mature animals, able to release gametes of good qual-
ity, increasingly difficult (Cirino et al., 2017). However, in
recent years, new research opportunities have emerged, such as
the use of the sea urchin for environmental immunotoxicology,
and a successful culture of P. lividus adult immune cells has
been established (Pinsino &Alijagic, 2019). This may provide
the basis for the design of new approaches for monitoring the
quality of the environment and estimating the hazards repre-
sented by test materials. Besides sea urchin embryos, larvae
(Fig. 4D) and cultured immune cells (Fig. 4E), adult sea
urchins (e.g. P. lividus) have also been used successfully in eco-
toxicological testing and environmental monitoring studies,
thus further highlighting the suitability of these organisms
as diversified model species for this type of research (Sugni
et al., 2007; Rouane-Hacene et al., 2018; Parolini et al., 2020).
Other non-conventional echinoderms have been successfully

used in research, particularly in assays focusing on regeneration
as an alternative and complementary perspective to embryo-
toxicity tests (Sugni et al., 2007). Regeneration is an intrinsic
part of the life history of echinoderms. Alterations to regener-
ation can strongly affect animal performance, including sur-
vival and fitness, and thus, potentially, have an immediate
impact on the entire population. Among the different model
species, the crinoid Antedon mediterranea (Fig. 4F) is a good can-
didate for environmental testing andmonitoring. Arm regen-
eration (Fig. 4G) is an extremely sensitive endpoint as it is
impacted by exposure to endocrine disruptors in environmen-
tally relevant quantities, which lead to alterations in skeletogenic
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Fig. 4. Representative echinoderm experimental models used in ecotoxicological research. (A) The starfish Asterias rubens; scale
bar = 2 cm. (B) The sea cucumber Holothuria tubulosa on a muddy substrate; scale bar = 2.5 cm. (C) The sea-urchin Paracentrotus
lividus feeding on Posidonia oceanica; scale bar = 1 cm. (D) A pluteus larvae of P. lividus; scale bar = 25 μm. (E) Culture of P. lividus
immune cells; scale bar = 30 μm. (F) The crinoid Antedon mediterranea; scale bar = 2 cm. (G) Arm regeneration (arrow) of
A. mediterranea 2 weeks post-amputation; scale bar = 1 mm. (H) The brittle star Ophiactis virens undergoing regeneration (arrow)
after asexual reproduction (fission); scale bar = 1.5 mm.
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processes, cell recruitment pathways, and proliferation
(Candia Carnevali et al., 2001; Sugni et al., 2007, 2008, 2010).
Brittle stars can also serve as optimal marine sentinels for envi-
ronmental monitoring. Burrowing and deposit/filter feeder
species such asAmphiura spp.,Microphiopholis gracillima, or the cos-
mopolitan Amphipholis squamata, can easily accumulate contami-
nants (D’Andrea, Stancyk & Chandler, 1996; Gunnarsson &
Sköld, 1999; Barboza, Martins & Lana, 2015) and eventually
display altered physiology, for example, a reduction in natural
bioluminescence (Deheyn, Jangoux &Warnau, 2000). Notably,
evidence of ingestion of plastic materials by brittle stars was first
reported over 40 years ago (Courtene-Jones et al., 2019). Similar
to A. mediterranea, arm regeneration in ophiuroids (Fig. 4H) is a
valuable property in the assessment of environmental contami-
nation: in the epibenthic carnivorous Ophioderma brevispina,
the organotin compounds bis(tri-n-butyltin)oxide (TBT) and
bis(triphenyltin)oxide (TPT) reduced arm regrowth at concen-
trations as low as 0.1 μg/L, possibly as a result of neurotoxic
effects (Walsh et al., 1986). Lastly, sea cucumbers (holothuroids)
have emerged as bioindicators of environmental contamination
(Marrugo-Negrete et al., 2021). These benthic scavengers and
burrowing organisms represent excellent tools for monitoring
contaminants accumulated in sediments. Furthermore, their
non-selective feeding strategy causes the ingestion of any avail-
able item on the substratum, thus leading to a diffuse presence
of particles of anthropogenic origin in their digestive tracts
(e.g. MPs; Iwalaye, Moodley & Roberston-Andersson, 2020).

(6) Standardised models – overview

Very few species among the above-mentioned taxa have
been used for (eco)toxicological tests. However, many of the
species used in standardised protocols possess exceptional
characteristics such as high sensitivity to various chemicals,
ubiquitous presence in aquatic ecosystems, ease of laboratory
maintenance, and the capacity to measure numerous physio-
logical parameters. These features drive their exploitation in
the field of (eco)toxicology. In recent years, new species have
been used to provide additional data about the ecotoxicity of
pollutants in aquatic ecosystems. Additionally, efforts are
being made to develop alternative in vitro and in silicomodels.
The development of in vitro tools such as primary cell cultures
and cell lines from various organs allows the use of cell cul-
tures as models to analyse the underlying mechanisms of tox-
icity. From this perspective, organisms that are not currently
used as standard models are of great interest for the develop-
ment of new tools.

IV. NON-STANDARD MODELS

(1) Porifera

Sponges (Porifera) are cosmopolitan sessile organisms
distributed in fresh and marine waters across the globe and
are key invertebrates in marine benthic ecosystems (Fig. 5A, B).
They are amongst the oldest of the modern Metazoa,

located at the basal position of the phylogenetic tree
(Wörheide et al., 2012; Redmond & McLysaght, 2021).
Phylum Porifera is divided into four clades: (i) Calcarea
(calcareous sponges with calcium carbonate skeletal spic-
ules); (ii) Demospongiae (demosponges, mostly with
organic or silicon dioxide skeletons; a few species without
skeletons), the largest group containing more than 76%
of all living sponge species; (iii) Homoscleromorpha (the
only class of sponges with a true basal lamina); and (iv)
Hexactinellida (glass sponges, with syncytial structure
and silicon dioxide spicules; not used as bioindicators
due to their rarity). Porifera are diblastic organisms with-
out organs, and many of their cells are capable of de-
and trans-differentiation into other cell types. The number
of cell types in sponges can exceed a dozen, and the diver-
sity of morphogenesis during development is comparable
to that of bilaterians (Simpson, 1984; Ereskovsky, 2010).
The outer layer of the sponge, composed of exo-pinaco-
cytes, is pierced by the channels of the aquiferous system.
The aquiferous system consists of channels and chambers,
the latter lined by choanocytes, which are flagellate cells.
The beating of choanocyte flagella produces a flow of
water through the aquiferous system, and the choanocytes
remove food particles from the water for consumption.
The space between the outer layer (exo-pinacocytes) and
the wall of the aquiferous system (a layer of choanocytes
and endopinacocytes) is filled with mesohyl,
an extracellular matrix containing populations of resident
cells, e.g. amoebocytes/archaeocytes, sclerocytes, lopho-
cytes, and spherulous cells (Simpson, 1984). Sponges con-
tribute greatly to ecosystem functioning as bio-filtrators:
they filter more than 900 times the volume of their body
per hour (Ludeman, Reidenbach & Leys, 2017), and effec-
tively trap particles smaller than 10 μm in size (Pile, Pat-
terson & Witman, 1996; Coma et al., 2001; Yahel et

al., 2007). They receive dissolved organic material from
the water column and make it available to higher trophic
levels as detritus (de Goeij et al., 2013; Rix et al., 2016,
2017, 2018). Sponges are rich in symbiotic bacteria, which
contribute to the overall recycling of organic material, poly-
phosphate production and the storage and supply of fresh
photosynthate (Taylor et al., 2007; Colman, 2015). Addi-
tionally, sponges are critical components of ecosystems,
providing habitats for other animals and food sources for
other species. As is the case for other filter-feeders, sponge
cells exhibit physiological responses to pollutants present
in the water.
Roveta et al. (2021) reviewed 50 biomonitoring studies per-

formed on sponges. Most of the work relied on the ability of
sponges to accumulate chemical elements from the water in
their tissues. Heavy metal content of sponges collected from
contaminated sites differed significantly from that in sponges
collected from uncontaminated locations (Patel, Balani &
Patel, 1985; Hansen, Weeks & Depledge, 1995; Araújo et

al., 2003; Perez et al., 2005; Rao et al., 2006; Cebrian, Uriz
& Turon, 2007; Batista et al., 2014). Demosponges with silica
spicules are of particular interest, because during spiculogenesis,
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Fig. 5. Non-standard models. (A, B) Sponges. (A) Halichondria panicea. (B) Aplysina cavernicola. (C–F) Cnidarians. (C) Stylophora pistillata.
(D) Pocillopora damicornis. (E) Nubbins (small fragments) of Stylophora pistillata portraying horizontal spread on the substrate. (F) Coral
nursery. (G) Nematostella vectensis. (H–K) Flatworms. (H) Schmidtea mediterranea. (I) Dugesia japonica. (J) Dugesia tigrine. (K) Macrostomum
lignano.
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the sclerocytes accumulate not only silicon but also heavymetals
in their spicules (Truzzi et al., 2008; Annibaldi et

al., 2011; Illuminati et al., 2016). Other physiological changes
that may be observed following exposure to sublethal
concentrations of pollutants include changes in sponge cell
behaviour (Cebrian et al., 2003, 2006), metabolism (Saby et

al., 2009; Selvin et al., 2009), production of ROS, expression
of stress genes (Müller et al., 1994, 1995, 1996) and increased
apoptosis (Batel et al., 1993). For example, in the case of
induction of genotoxicity by exposure to heavy metals
(Akpiri, Konya & Hodges, 2017), changes in the expression
of metallothionein (Berthet et al., 2005), post-translational
modification of tubulin (Ledda et al., 2013), and expression
of apoptosis-associated prosurvival factor (Luthringer et al.,
2011) have been reported. Other biomarkers currently used
in sponges include the altered expression or activity of heat
shock proteins (HSPs) (e.g. the effect of copper on Crambe

crambe; Agell et al., 2009), glutathione (GSH) and glutathione
S-transferases (GST) (e.g. the effects of industrial, urban, and
harbour pollution on Sarcotragus spinosulus; Khati et al., 2018).
These lines of evidence support the use of sponges in retroac-
tive assessments of water pollution (i.e. they can be viewed as
providing an ‘ecotoxicological memory’), particularly in
long-living species. Suggested models for toxicological tests
include ubiquitous species of Demospongiae like Halichondria

panicea (Fig. 5A), which is well studied in many respects, Aply-
sina cavernicola (Fig. 5B), and Spongia officinalis, which is found in
the Mediterranean Sea, a focal region for aquatic pollution
studies.

At the cellular level, the states of cells like choanocytes,
which are in direct contact with the filtered water, can be
used as biomarkers. Along with archaeocytes, which are
amoebocytes residing in the mesohyl (Funayama, 2013), cho-
anocytes are part of the stem cell system of sponges and
undergo constant renewal due to high rates of proliferation
and the shedding of old cells into the lumen of choanocyte
chambers (De Goeij et al., 2009). Under constant stress
conditions, the pool of both stem cells in general, and cho-
anocytes in particular, can change (e.g. in cell distribution, cell
cycle phases, population size); this trait can be easily assessed
by flow cytometry, as described for Suberites domuncula and
Haliclona oculata (Sipkema et al., 2004; Schippers et al., 2011).

In addition, the sexual reproduction, asexual reproduction
(by budding, gemmule formation) and regeneration (the
development of a new animal from a body fragment and
whole-body regeneration from cell aggregates) of sponges
could be of interest in the assessment of environmental stress
factors. The sexual reproduction of sponges leads to the for-
mation of free-floating larvae that, following settling,
undergo metamorphosis into juvenile sponges (Ueda et

al., 2016). Exposure of the larvae of C. crambe and Scopalina

lophyropoda to heavy metals and PAHs inhibits their settling.
Copper ions act synergistically with PAHs, although
treatment with Cu2+ alone does not inhibit larval settling
(Cebrian & Uriz, 2007a). The model of larval settlement
andmetamorphosis is potentially attractive andmay be more
sensitive than the model for adult sponges, but the molecular

mechanisms that enable competence acquisition and meta-
morphosis are poorly understood (Conaco et al., 2012).
Additionally, the extensive asexual reproduction and regen-
eration capabilities of sponges, even from adult body frag-
ments (Baldacconi et al., 2010; Çelik et al., 2011), has
enabled the production of clonal animals providing repro-
ducible responses to contamination (Osinga, Tramper &
Wijffels, 1999; Schippers et al., 2012) that can be used for pol-
lution monitoring. Furthermore, primmorphs, artificial
models generated from sponges belonging to the taxa
Demospongiae, Calcarea, and Homoscleromorpha (Lavrov
&Kosevich, 2014; Akpiri, Konya &Hodges, 2020), also have
potential as in vitro tools for toxicological tests. Primmorphs
are obtained from sponge tissues dissociated into cells by
mechanical or chemical methods. These cells form aggre-
gates and dedifferentiates, and the outer layer of the aggre-
gated cells forms a covering layer, resulting in the formation
of a radially symmetrical primmorph. The cells within the
primmorph then differentiate and small fragments that
attach to the substrate form new sponges by extending their
structures (Lavrov & Kosevich, 2014, 2016; Ereskovsky
et al., 2021). Differentially expressed genes, and some of
the mechanisms underlying the dissociation–reaggregation
phenomena in the sponge Oscarella lobularis have been
revealed (Vernale et al., 2021). Heavy metals influence the
behaviour of cells in the reaggregation process (Cebrian &
Uriz, 2007b,c). Further studies of the effects of pollutants
on the aggregation and development of primmorphs will
allow the creation of effective and suitable methods for eval-
uating biological reactions to pollution. Additional break-
throughs in terms of in vitro tools include the development
of cell cultures. Primary cultures of various species
have been initiated (Rinkevich, Blisko & Ilan, 1998a;
Pomponi, 2006; Urban-Gedamke et al., 2021) and devel-
oping cells have been cryopreserved (Munroe et al., 2018),
but many attempts to obtain cell lines have failed (Grasela
et al., 2012). Conkling et al. (2019) reported rapid cell division
in primary cultures established from nine sponge species, dem-
onstrating a cultured cell life span of 21–35 days. Such
improvements may open additional avenues for the broad-
scale use of sponge cell cultures in in vitro pollution assessment.

(2) Cnidaria

Cnidarians, especially corals (Fig. 5C,D), have been successfully
used in ecotoxicological experiments (Fig. 1; Roveta et al., 2021)
and their potential for applications in biomonitoring has
been repeatedly highlighted (Rainbow, 2002). This potential
is supported by the very simple tubular body morphology of
cnidarians, which are diploblastic organisms consisting
of two tissue layers, the outer epidermis and the inner
gastrodermis, which lines the gastrovascular cavity. These
layers are separated by an extracellular matrix, the mesoglea,
containing some cells in Scyphozoa and Anthozoa. Both the
epidermal and gastrodermal layers are in constant contact
with the environment. Cnidarians can reproduce both
sexually and asexually. Asexual reproduction, which
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characterises many cnidarian species, ensures a supply of
high numbers of genotypic replicates with low variations in
physiological/biochemical parameters, which is an impor-
tant asset in performing reliable tests (Shafir, Van Rijn & Rin-
kevich, 2001, 2003, 2006). Other advantages of cnidarians for
ecotoxicological testing include their wide distribution in almost
all freshwater, brackish and marine ecosystems, their pres-
ence in both temperate and tropical zones (Howe, Reichelt-
Brushett & Clark, 2012), and the number of cnidarian species
that deposit hard skeletons. However, there is a relative pau-
city of ecotoxicological studies exploiting cnidarians, as
shown in studies using the comet assay to examine aquatic
genotoxicity (Svanfeldt et al., 2014). Only seven cnidarian
species were included in a recent review on the comet assay
in model invertebrates and unicellular organisms (Gajski et
al., 2019), which covered almost 300 publications and hun-
dreds of species: the hydrozoan Hydra magnipapillata, the sea
anemones Anthopleura elegantissima, Actinia equina and Bunodo-

soma cangicum, and the corals Stylophora pistillata (Fig. 5C), Ser-
iatopora hystrix and Montastraea franksi. Testing on cnidarians
typically involves a small number of model animals for which
laboratory husbandry is available, with difficulties emerging
when animals collected from the wild are used, as these pro-
cedures are inherently destructive (Summer, Riechelt-Brush-
ett & Howe, 2019).

Hydra is themost widely used hydrozoan genus inmonitoring
and ecotoxicological studies. Hydra polyps are effective for tox-
icity testing since they are easily adapted for mass culture in
the laboratory (Loomis, 1953), forming large numbers of
individuals that normally reproduce asexually by budding.
Hydra is a reliable indicator of pollution due to its single polyp
structure, its basic anatomy, and the possibility to use genet-
ically identical or similar individuals in the same or separate
tests (Beach & Pascoe, 1998): this ensures reproducible results
with a low coefficient of variation (Quinn, Gagné & Blaise,
2012). The Hydra genome has been completely sequenced
and the full range of next-generation tools is available
(Chapman et al., 2010). During the last three decades, several
Hydra species [primarily H. attenuata (=H. vulgaris) and H.

magnipapillata] have been used in toxicology studies with
numerous compounds, including acute, sub-chronic, chronic,
reproductive, developmental, carcinogenic, and genetic toxins
(Quinn et al., 2012; Patwardhan & Ghaskadbi, 2013; Zeeshan
et al., 2017; Murugadas et al., 2019; Cera et al., 2020). Many of
these studies used theHydra assay (Johnson & Gabel, 1992). In
comparison, ecotoxicological research on jellyfish species is
sparse (Faimali et al., 2014; Ohdera et al., 2018). While gener-
ally considered to be robust towards anthropogenic stressors
(e.g. Richardson et al., 2009), it has long been known that jelly-
fish accumulate toxic metals from the environment in high
concentrations and are therefore a potential source of metal
transfer in food chains (Romeo & Gnassia-Barelli, 1992) and
may themselves be sensitive to environmental toxicity. The
size of medusae can be a limitation in studies employing a
large number of specimens, although ecotoxicological assays
on ephyras have been carried out successfully, primarily on
the common species Aurelia aurita (e.g. Faimali et al., 2014;

Costa et al., 2015; Olguín-Jacobson et al., 2020), a proposed
model organism in ecotoxicology due to its high sensitivity to
pollutants (Olguín-Jacobson et al., 2020). In addition, some
recent studies have explored the impact of chemicals on the
sessile stage, the polyps (Olguín-Jacobson et al., 2020; Pinteus
et al., 2020), a protocol that has simplified the use of scypho-
zoan species in ecotoxicological assays.

Members of the Anthozoa (including sea anemones and
corals) are unique tools for ecotoxicological studies since they
may live for prolonged periods of hundreds of years, accumu-
lating an ecotoxicological memory, and some, like scleracti-
nian corals, may assimilate environmental records into their
skeletons (Shah, 2021). A search of Web of Science identified
3045 papers published in the last decade that contained the
key words ‘coral + (ecotoxicology or toxicology or pollu-
tion)’. One of the most diversified ecosystems on Earth is
found in coral reefs that provide numerous ecosystem ser-
vices, including a means of living for hundreds of millions
of people (UN Environment Programme, 2023). Their mon-
itoring requires the development of a suite of sensitive,
standardised ecotoxicological tests for assessing short- and
long-term anthropogenic impacts on corals (Branton, 2018).
However, coral ecotoxicology at the laboratory level (Fig. 5E) is
methodologically restricted, as coral husbandry is not easy. This
is primarily due to the numbers of organisms required for
adequate replication, as collecting corals from the field is
inherently destructive (Vijayavel & Richmond, 2012). To
overcome this difficulty, stocks of coral colonies (with varying
numbers of coral genotypes for each species) can be devel-
oped and maintained in underwater coral nurseries
(Fig. 5F; Levy et al., 2010; Rinkevich, 2015, 2021; de la Cruz
et al., 2015), an approach with new market opportunities
(Rinkevich, 2015). Numerous healthy ramets can be pro-
duced from each coral genet, opening new avenues for eco-
toxicological research.

A range of laboratory-based ecotoxicological assays have
been developed for corals, including histopathology, produc-
tivity levels, calcification rates, reproductive effort, and state
of symbionts (i.e. bleaching events and/or photosynthetic
activity), yet there is a need for the development of more
defined bioassays (Branton, 2018). One such assay is the nub-
bins assay (Shafir et al., 2001, 2003, 2006; Fig. 5E), based on
the repeated use of numerous very small fragments from
selected coral genotypes. This assay provides a cheap, stan-
dardised and low-variation approach, and limits the ecologi-
cal impact of harvesting large numbers of corals for research.
This protocol has been employed to evaluate the toxicity of
organic carbon, heavy metals, household detergents, MPs,
oil and oil dispersants, ultraviolet (UV) filters and more to
reef corals (Ferrier-Pagès et al., 2005; Kuntz et al., 2005;
Shafir, Van Rijn & Rinkevich, 2007; Shafir, Halperin &
Rinkevich, 2014; Chen et al., 2012; Vijayavel & Richmond,
2012; Svanfeldt et al., 2014; Corinaldesi et al., 2018; He
et al., 2019; Aminot et al., 2020; Mitchelmore et al., 2021; Xiao
et al., 2021). In addition, toxicity tests conducted on field-
collected coral material, including planulae, gametes, and
fragments, have provided important results (reviewed in
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Howe et al., 2012; Loya & Rinkevich, 1980) and additi-
onal methodologies, like vital staining (Shefy, Shashar &
Rinkevich, 2021), have recently been added.

Sea anemones are also good candidates for routine
ecotoxicological tests. The absence of a calcium carbonate skele-
ton is a major feature of scleractinians, and the availability of
symbiotic and aposymbiotic sea anemones has been noted
(Howe et al., 2012). Sea anemones can be easily maintained in
laboratory settings and in large cultures, and research has shown
that they are susceptible to a variety of pollutants (Anjos et

al., 2017; Howe et al., 2012, 2017; Trenfield et al., 2017; Ianna
et al., 2020; Vitale et al., 2020; Rosner et al., 2023). The sea anem-
ones Aiptasia pulchella (Exaiptasia pallida), Anemonia viridis and A.

equina (Howe et al., 2012; Trenfield et al., 2017; Vitale et

al., 2020) have been suggested as the best model taxa for
research. Following the genomic sequencing of Nematostella vecten-
sis (Fig. 5G), ecotoxicology studies have revealed transcriptome
responses to stress and pollutants (Goldstone, 2008; Elran et

al., 2014; Tino et al., 2014; Tarrant et al., 2018). The use of in vitro
approaches (Rabinowitz, Moiseeva &Rinkevich, 2016) may fur-
ther enhance ecotoxicological tests on cells derived from this sea
anemone and other related species. Examples of toxicological
effects on N. vectensis are shown in Fig. 6, including impacts
on development and regeneration (Klein et al., 2021).

(3) Platyhelminthes

Platyhelminthes, commonly known as flatworms, are a
phylum of bilaterian acoelomate organisms. They contain
distinct brain, digestive, and excretory systems, but lack
circulatory, skeletal, or respiratory organs (Hyman, 1951).
Platyhelminthes can be free-living, commensal, or parasitic.
The phylum is subdivided into several clades, including
Tricladida. This taxon includes both marine and freshwater
species, some of which have been utilised in ecotoxicology over
the last decade. The wide range of environments in which they
live makes them ideal models to test ecosystem health. Among
the Platyhelminthes, the term ‘planarian’ is used to describe
the free-living flatworms belonging to Tricladida, which are
the best studied models from this phylum. These animals
reproduce through sexual and asexual (animal fission) strate-
gies (Vila-Farré & Rink, 2018). The ecosystem functions of
flatworms have recently been reviewed (Majdi, Kreuzinger-
Janik & Traunspurger, 2016; Vila-Farré & Rink, 2018) and
we refer the reader to these reviews for an extended discussion.

Many species of planarians have an immense capacity for
regeneration, with small pieces of a single animal being able
to generate a multitude of progeny (Ivankovic et al., 2019).
Their regeneration capacity depends on the presence of
ASCs called neoblasts, which can represent >30% of cells
in a single adult individual (Rink, 2013). Several well-studied
models are available, including Schmidtea mediterranea (Fig. 5H).
A complete genome, various transcriptomes and a culture of
neoblasts are available for this species (Grohme et al., 2018;
Wu & Li, 2018; Lei et al., 2023). Its ability to regenerate in
the presence of various chemical compounds has been used in
ecotoxicology. Studies have also considered behavioural

endpoints, such as mobility (Deochand, Costello & Deoc-
hand, 2018; Pestana & Ofoegbu, 2021). In all experiments,
a culturing methodology, following stringent standardised
protocols, has been indispensable to the screening process
(e.g. Wu & Li, 2018). This is rarely the case for other species.
In the absence of standardisation, the effects of specific che-
micals are (and must be) evaluated in different populations,
as populations from different geographical areas can show
differences in sensitivity (Indeherberg, Van Straalen &
Schockaert, 1999). More economical and efficient technol-
ogies have been developed recently to analyse the effects of
molecules on the development and behaviour of model
systems. Such technologies can be applied to a variety of
planarians, particularly Dugesia japonica (Fig. 5I), S. mediterranea,
andGirardia tigrina. Thesemethods allow cross-species compar-
isons, indicating the best species to be utilised for each chemi-
cal test or the optimal physical attributes to be studied
(Hagstrom et al., 2015; Hagstrom, Cochet-Escartin & Collins, 2016;
Ireland et al., 2020). Interestingly, some studies have found
that, under certain conditions, planarians such as D. japonica
possess comparable sensitivity to established models used in
mammalian toxicology (Hagstrom et al., 2019).
Most ecotoxicological studies use the morphology and

behaviour of planarians as their endpoints due to the well-
characterised morphology of many species and the availability
of tests that allow the tracking of a few well-known
behavioural traits. These include locomotion, thermotaxis,
negative phototaxis, and the capacity to ‘scrunch’ (i.e. display
a muscle-driven oscillatory escape gait) in reaction to toxic
heat (Cochet-Escartin,Mickolajczk &Collins, 2015). The neu-
ropharmacological effects of many chemicals have been
assessed using planarians (Pag�an, Rowlands & Urban, 2006;
Yuan, Zhao & Zhang, 2012; Stevens et al., 2015). Such studies
focused on specific behavioural patterns following exposure to
drugs that act on neural transmission (e.g. Buttarelli, Pellicano
& Pontieri, 2008; Rawls et al., 2008; Sacavage et al., 2008;
Dziedowiec et al., 2018) and the effects of different drugs on
the natural behaviour and regeneration of planarian species.
For example, compounds such as carbamazepine, used to treat
epilepsy, or fluoxetine, used to treat depression, have revealed
effects on nutrition and reproduction of S. mediterranea

(Ofoegbu et al., 2019). Compounds used for the treatment of
Alzheimer’s disease (e.g. donepezil, tacrine, galantamine, and
rivastigmine) were studied in the related species, Dugesia tigrina
(Fig. 5J; Bezerra da Silva et al., 2016). The behaviour of planar-
ians can now be tracked on a large scale using emerging new
technologies such as automatic tracking systems (Zhang et

al., 2019a). Such platforms enable the systematic analysis of
large numbers of compounds and the tracking of complex sets
of parameters. Using large-scale screening platforms also
allows the testing of multi-target mixtures with therapeutic
potential that are derived from natural marine sources (e.g.
Henry & Wlodkowic, 2019; Zhang et al., 2019a).
Although the potential for automatisation is clear, most

toxicological research on planarians has focused on a
small number of substances and employed more tradi-
tional methodologies. These approaches have been used
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to assess the impact of insecticides, pesticides, metals, and
neurotoxic compounds (Simao et al., 2020; Dornelas
et al., 2021; Silva et al., 2022).

Few studies have tracked the effects of chemicals on the
molecular and cellular composition of flatworms (Plusquin
et al., 2016). These studies rely on flatworms because

Fig. 6. Toxicological tests applied to Nematostella vectensis as a model organism. (A) Gene expression changes in mature N. vectensis after
4 days exposure to polluted sea water collected from Haifa port and Herzliya marina. Relative gene expression comparisons were
made using quantitative polymerase chain reaction (qPCR) between animals exposed to polluted sea water diluted with double-
distilled water (DDW; N = 6 for Haifa and N = 6 for Herzliya) in a 1:2 ratio, and animals grown in clean sea water samples from
Tel Shikmona beach, also diluted with DDW in a 1:2 ratio (N = 6). The expression changes are presented as fold changes on the
log2 scale. The tested genes represent N. vectensis orthologues of well-known oil pollution biomarkers retrieved from the N. vectensis
genome database (Putnam et al., 2007). Transcript id is specified in parentheses; Asterisks are used to distinguish between
paralogous genes. CCS, copper chaperone for superoxide dismutase (227361); GPX, glutathione peroxidase (90698); GST,
glutathione S-transferase (GST* 113255; GST** 86756); SOD, superoxide dismutase (SOD* 94316; SOD** 234825; SOD***
165732). Error bars represent standard deviations (SD). (B–E) N. vectensis embryos following electrophoresis with pTimer-1 Vector
(Takara) under the control of the CCS gene promoter and exposed to the accommodated fraction of a medium containing 30 ppm
crude oil. The time following electroporation is indicated. The embryos were alive at the time the photographs were taken.

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.
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they are particularly well suited for investigating how
environmental stressors regulate stem cells since it is simple
to observe stem cell dynamics (Stevens et al., 2018). Plusquin
et al. (2016) analysed the neoblast dynamics of the flatworm
Macrostomum lignano (Fig. 5K) in the presence of environmen-
tally relevant metals, using a combination of morphological,
gene expression and immunochemical methodologies, allow-
ing for detailed characterisation of the effects of metals on the
proliferation of stem cells. In a similar study, the exposure of
S. mediterranea neoblasts to the carcinogen methyl methanesul-
fonate (MMS), resulted in a reduction in neoblast prolifera-
tion rate, which was attributed to induction of DNA
damage (Plusquin et al., 2012).

In addition to existing studies on the general effects of
pollutants on behaviour and regeneration, other studies have
examined their specific effects on cellular components, such
as DNA (e.g. chromosomal assays, nuclear DNA fragmen-
tation) or enzymatic activities (e.g. CAT or HSPs;
reviewed by Knakievicz, 2014). Environmental effects on
the population level were tested by tracing reproductive
fitness, such as the number of offspring or changes in sex
ratios (Miyashita et al., 2011) while an impact on the micro-
biota was demonstated by Bijnens et al. (2021) on S.

mediterranea.

(4) Tunicata

Tunicates are filter-feeding marine invertebrates that are
found in oceans and seas with salinities over 2.5%. They
are classified as a sister group of vertebrates (Delsuc
et al., 2006, 2008) and are named after their ‘tunic’, which
is the outer layer that encloses the animal body (Deck,
Hay & Revel, 1967; Welsch, 1984; Van Daele et al., 1992;
Burighel & Cloney, 1997; Di Bella, Carbone & De Leo, 2005;
Xu et al., 2008; Hirose, 2009). Tunicates are subdivided into
sessile ascidians, pelagic thaliaceans, and larvaceans (Stach,
Braband & Podsiadlowski, 2010). Ascidians are the best-stud-
ied group of tunicates and encompass around 2300 species.
They are considered reference organisms in investigations
of the developmental biology, regeneration, allorecognition,
and immunobiology of invertebrate chordates (Satoh, 1994,
2016; Burighel & Cloney, 1997; Stoner, Rinkevich &
Weissman, 1999; Corbo, Di Gregorio & Levine, 2001;
Khalturin et al., 2003; Rinkevich, 2004; Jeffery, 2015;
Franchi & Ballarin, 2017; Ferrario et al., 2020; Gordon,
Manni & Shenkar, 2019; Gordon et al., 2021; Ballarin et al.,
2021). Most ascidians have a biphasic life history with two
distinct body plans: a swimming tadpole larva and a sessile
adult. The tadpole larva is considered a prototype of the
chordate ancestor (Fig. 7A), with which it shares features such
as a notochord, dorsal neural tube, pharynx provided with gill
slits, and a muscular tail (Satoh, 1994; Burighel & Cloney,
1997). Studies have found ascidians to be reliable model organ-
isms for ecotoxicological bioassays due to their production of
eggs almost all year round, rapid development, simplicity of
the larval stage (Fig. 7A), ease of management in the laboratory,
and their small sequenced genome (Tosti & Gallo, 2012; Gallo

&Tosti, 2015;Metri et al., 2019). Ascidians include both solitary
and colonial species.

(a) Solitary ascidians

Solitary ascidian species have become increasingly popular
for toxicological studies. Ciona intestinalis is a well-studied
ascidian species (Mansueto et al., 1993; Bellas, Beiras &
V�azquez, 2003) that has been shown to include at least two
cryptic species, Ciona robusta (Fig. 7B) and C. intestinalis

(Suzuki, Nishikawa & Bird, 2005; Caputi et al., 2007; Nydam
& Harrison, 2007; Zhan, Macisaac & Cristescu, 2010;
Brunetti et al., 2015). We refer to both species herein as Ciona
spp. Additional models being investigated includeHalocynthia
roretzi, Ciona savignyi, Microcosmus exasperatus, Phallusia fumigata,
and Phallusia mammillata (Pennati et al., 2006; Choi et al.,
2014; Cahill et al., 2016a; Gomes et al., 2019; Anderson &
Shenkar, 2021). The solitary ascidian phylogenetic position,
a fully sequenced genome and available genomic tools make
them attractive models for studying the mode of action
(MOA) of toxic compounds (Dehal et al., 2002; Stolfi &
Christiaen, 2012).
The larvae have a simple structure consisting of only six

tissue types (Fig. 7A), making it easy to assess phenotypic
alterations during development and to discriminate between
specific and non-specific toxicity of substances (Katz, 1983;
Nicol & Meinertzhagen, 1991; Meinertzhagen, Lemaire
& Okamura, 2004; Jiang et al., 2005; Horie et al., 2008;
Hudson, 2016). The juveniles are transparent, allowing
easy observation of morphological changes caused by
stressors, and have been used to evaluate the impact of pol-
lutants such as MPs, tributyltin, bisphenol A, drugs, and
oil dispersants on survival and morphology (Mansueto,
Cangialosi & Faqi, 2011; Mizotani et al., 2015; Messinetti
et al., 2019; Eliso et al., 2020b). The use of software tools
such as Toxicosis (Gazo et al., 2021) allows for the high-
content analysis of larval phenotypes and the evaluation
of embryonic malformations through scoring morphomet-
ric endpoints. Other commonly used endpoints include the
percentage of normal hatched larvae and the progression
of metamorphosis to adults (Fig. 7C–F). Behavioural phe-
notyping, such as swimming activity, also has the potential
for identifying effects of toxic substances on neuro-beha-
vioural performance (Zega, Thorndyke & Brown, 2006;
Rudolf et al., 2019). Comparing embryotoxicity data for
chemicals in Ciona spp., bivalves (Mytilus spp.) and sea
urchins (Paracentrotus spp.) demonstrates that Ciona spp.
can support classical tests (Table 2).
Adult ascidians are abundant in both contaminated and

pristine environments. They are important filter-feeders in
many benthic ecosystems and can filter dozens of litres of
water per day, retaining submicron-sized particles and
accumulating low concentrations of toxicants from the
water column to which they may show sensitivity
(Draughon, Scarpa & Hartmann, 2010; Jacobi, Yahel &
Shenkar, 2018; Tzafriri-Milo et al., 2019; Vered et al., 2019).
Therefore, adults are useful for bioaccumulation studies
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of specific tissues and organs and for evaluating how ingested
toxicants may affect reproduction and development. In recent
years, adult solitary ascidians, including invasive species,
have been used as bioindicators to monitor anthropogenic
stressors such as heavy metals, MPs, phthalate acid esters,
and pharmaceutically active compounds (Vered et al., 2019;
Navon et al., 2020). Biomonitoring methods and indices,
including both chemical and physiological analyses, have
been used to quantify the distribution of chemicals in tissues
and organs (Tzafriri-Milo et al., 2019). Increasing evidence
suggests that stressful conditions stimulate the production of
ROS, leading to an inability to detoxify pollutants or repair
induced damage (Kaloyianni et al., 2009; Tomanek, 2014;
Canesi, 2015; Puppel, Kapusta &Kuczy�nska, 2015; Zeeshan
et al., 2016). Antioxidant responses have been used as

markers of stress conditions related to pollutants (Shida
et al., 2003; Franchi et al., 2014; Drago et al., 2021) in the
digestive system (the first organ to contact pollutants) and cir-
culating haemocytes (the major detoxification organ) in
ascidians.

(b) Colonial ascidians

Colonial ascidians are the only chordates capable of asexual
reproduction (Manni et al., 2007) and have been widely
used in studies investigating asexual reproduction (Manni
& Burighel, 2006; Manni et al., 2014, 2019; Rosner
et al., 2014; Gasparini et al., 2015; Kowarsky et al., 2021),
regeneration (Fig. 8A–F; Rinkevich, Shlemberg & Fishelson,
1995b; Rinkevich et al., 2007a; Voskoboynik et al., 2007;

•
•
•

•

•
••

Fig. 7. Ascidians. (A) Diagram of a typical larva. Bv, brain vesicle; gd, gastrodermis; ep, epidermis; mc, mesenchyme; ms, muscle; nc,
nerve chord; nt, notochord; oc, ocellus; ot, otolith; vg, visceral ganglion. (B) A typical solitary ascidian Ciona robusta. (C–F) Solitary
ascidian life stages used in (eco)toxicological tests.
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(Figure 8 legend continues on next page.)
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Brown et al., 2009; Rosner, Kravchenko & Rinkevich, 2019),
stem cells (Rinkevich et al., 2010; Voskoboynik et al., 2008;
Rosner et al., 2013) and allorecognition (Sabbadin, 1962;
Karakashian & Milkman, 1967; Oka, 1970; Mukai &
Watanabe, 1974; Koyama & Watanabe, 1982; Saito &
Watanabe, 1982; Taneda & Watanabe, 1982a,b; Rinkevich
& Weissman, 1992; Ballarin, Cima & Sabbadin, 1995;
Ballarin et al., 2002; Rinkevich, Porat & Goren, 1995a;
Rinkevich, Tartakover & Gershon, 1998; Cima, Sabbadin
& Ballarin, 2004; Rinkevich, 2005b; Voskoboynik et al.,
2013; Taketa & De Tomaso, 2015; Franchi & Ballarin, 2017).
Very few colonial ascidians have been used as sentinel organ-
isms in toxicological assays and most data refer to the species
Botryllus schlosseri (Fig. 8G). Toxicological tests on B. schlosseri

larvae have primarily focused on antifouling paints.
Results suggest that antifoulants interfere with larval adhe-
sion and metamorphosis, cause developmental delays and
increase mortality (Cima & Ballarin, 2004; Cima, Burighel
& Ballarin, 2006).

The effects of exposure to xenobiotics on adult colonial
ascidians have mainly been studied on haemocytes. At high
concentrations, xenobiotics can change many parameters,
from phagocytosis capability and membrane permeability
to increasing cell mortality by inducing apoptosis. At lower
concentrations, they can alter cell shape by changing cyto-
solic levels of Ca2+, hence affecting the cytoskeleton. Such
endpoints have been used to screen various antifouling com-
pounds and compare their toxicity (Cima et al., 1995,
1997, 1998a, 2002; Cima, Spinazi & Ballarin, 1998b;
Cima, Bragadin & Ballarin, 2008; Cima & Ballarin, 1999,
2000, 2004, 2012, 2015; Menin et al., 2008; Matozzo &
Ballarin, 2011; Matozzo, Franchi & Ballarin, 2014; Cima
& Varello, 2020) or to evaluate the impact of cadmium
(Franchi & Ballarin, 2013).

Responses of whole colonies to pollutants were also tested.
The response of B. schlosseri depends on pollutant concentra-
tion and exposure duration, ranging from changes in tran-
scription of genes involved in glutathione synthesis and
antioxidant responses, detectable only in haemocytes

(Franchi, Ballin & Ballarin, 2017), to phenotypic modifications
such as disconnected zooid oral siphons, reduced circulation,
and darkened ampullae, or even colony death (Gregorin et

al., 2021). Pseudistoma crucigaster colonies transplanted for
6 months to polluted areas of the Catalan coast with high con-
centrations of dissolved copper exhibited negative effects on
growth (Agell et al., 2004). Other experiments have shown an
increase in the activity of enzymes like SOD and CAT in
Botryllus colonies transplanted to sites exposed to high anthro-
pogenic impact (Tasselli et al., 2017). Alterations in GPX gene
expression due to exposure to crude oil and environmental
pollutants were also detected (Fig. 8G).
To date, the use of colonial ascidians in ecotoxicology has

been limited to a few species, as reported above. Important
features of colonial species that have been neglected, such
as their asexual reproduction and their huge regenerative
ability could be exploited as reliable biomarkers in environ-
mental monitoring.

(c) Appendicularia

Appendicularia, free swimming tunicates, are another group
of tunicates proposed as bioindicators for monitoring the
quality of estuarine areas. The density of Oikopleura longicauda,
Oikopleura dioica, Oikopleura fusiformis, and Fritillaria haplostoma

populations has been used to evaluate water quality in Rio
de Janeiro state (de Carvalho, Bonecker & Nassar, 2016).

(5) Non-standard models – overview

Many hitherto underused species (poriferans, cnidarians,
planarians, and colonial ascidians) have exceptional charac-
teristics such as enormous regenerative ability, and the pos-
session of populations of pluripotent ASCs, capable of
differentiation into both soma and germ lineages (Rinkevich
et al., 2022; Rosner et al., 2021; Ballarin et al., 2022). These
features can be exploited in the field of (eco)toxicology in
many ways: (i) production of many ramets from a specific
genet, all with identical genetic information and epigenomes,

(Figure legend continued from previous page.)
Fig. 8. (A–F) Various time points during regeneration of a Botryllus schlosseri colony after removal of all buds from the colony
(budectomy). (A) A colony immediately after budectomy. (B) Morphological changes occurring in the budectomised colony upon
entering stage D (takeover stage). These changes include the destruction of zooids, dilation of blood vessels, and increased
pigmentation of ampullae. (C) Formation of new zooids. (D, E) Healing of the colony through normal blastogenic cycles. (F) The
recovered colony. am, ampulla; bv, blood vessel; pb, primary bud; tu, tunic; zo, zooid. (G) Changes in B. schlosseri glutathione
peroxidase (GPX) messenger RNA (mRNA) expression following the submersion of colonies (N = 3 for each test) in crude oil-
polluted sea water samples and environmental seawater samples. Each colony was subcloned into several ramets. A ramet was
submersed in tested seawater samples while the matched control was submersed in clean sea water originating from Tel-Shikmona
(near Haifa). GPX expression was measured using relative quantitative polymerase chain reaction (qPCR) analysis and is
expressed as fold changes at the log2 scale. Some of the tested samples consisted of clean sea water (from Tel-Shikmona) spiked
with 20 or 40 parts per thousand (ppt) crude oil while others contained only sea water without any additional additives. Shafdan is
near Tel Aviv, where regional treated sewage was discharged into the Mediterranean Sea until the end of 1996. The Haifa port
sample was collected from a highly polluted region inside Haifa port and the ‘open sea’ sample was taken from open sea outside
Haifa port. Each experiment was performed with three different genets. Statistical analysis was performed by the paired t-test
method; statistically significant upregulation of GPX mRNA following treatment (P ≤ 0.005) is marked by an asterisk (A. Rosner,
unpublished data).
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for testing various endpoints under controlled laboratory and
field experiments; (ii) the possibility of assessing the impact of
various pollutants on regeneration (Best et al., 1981; Best &
Morita, 1982) using new models like artificial embryos
(Johnson et al., 1982; Johnson & Gabel, 1983), the nubbins
assay (Shafir et al., 2003) and the use of primmorphs (Akpiri
et al., 2020) that include endpoints such as the inhibition of
regeneration, regeneration time and formation of teratomas;
(iii) evaluation of the direct effects of pollutants on stem cell
populations, and the use of these systems to design effective
interpretations of in vitro outcomes in order to understand
whole-body impact better; and (iv) investigation of the epige-
netically mediated inheritance of the impacts of pollution
by unexposed descendants (Ellis, Kissane & Lynch, 2021b;
Rosner et al., 2021).

V. NEW OPTIONS FOR BIO-MONITORING
USING NON-STANDARD MODELS FOLLOWING
THE DEVELOPMENT OF INNOVATIVE
METHODS

Advances in omics and bioinformatics methodologies over
recent decades have expanded the use of non-model organ-
isms (Pai et al., 2018; Amil-Ruiz et al., 2021), and enabled fast
and effective studies on the impact of environmental pollu-
tion at different organisational levels, from the cell to the
population. Omics approaches cover genomics for studies
at the DNA landscape level, transcriptomics for studies on
RNA repertoires, metabolomics for studies on metabolites
and epigenomics to study epigenetic modification.

Transcriptomic analyses performed on aquatic inverte-
brates exposed to various pollutants (Srivastava et al., 2010;
Elran et al., 2014; Riesgo et al., 2014; Ereskovsky et al.,
2017; Kenny et al., 2018, 2020; Zhang et al., 2019b; Luter
et al., 2020; DeLeo et al., 2021; Rubin et al., 2021) have shed
light on species-specific differences in response to environ-
mental pollution. Tests based on the mode of regulation
and expression of genes of the aryl hydrocarbon receptor sig-
nalling pathway (Hahn, Karchner & Merson, 2017) and
xenobiotic-metabolising enzymes have become prominent
examples of these approaches, serving as reliable pollution
biomarkers in various organisms, including non-model
organisms (Zhou et al., 2020). Proteome profiles
have also been used as pollutant-specific biomarkers
(Diz & Calvete, 2016; Gouveia et al., 2018). For example,
a differential expression of proteins has been observed in
solitary ascidians (Kuplik, Novak & Shenkar, 2019) and
corals (Tisthammer et al., 2021) exposed to pollution.
Metabolomic analysis revealed that microbiome-derived
bioactive metabolites contribute significantly to the overall
organism metabolites, with changes observed in the meta-
bolome of the amphipod crustaceanHyalella azteca exposed
to the anti-inflammatory drug Diclofenac (Fu et al., 2021).
In the sponge S. officinalis, exposure to anthropogenic

pollutants containing the synthetic surfactant coconut
diethanolamide (C11 DEA) resulted in the discovery of
new metabolites, while increased levels of metabolites were
found in the coral S. pistillata following exposure to polyethyl-
ene MPs (Bauvais et al., 2017; Lanctôt et al., 2020). Site-associ-
ated differences in metabolome were also observed in the
ascidian Ciona intestinalis (Utermann et al., 2020).

Pollution can also modify the epigenetic signature of
organisms, and this can persist for several generations, even
after pollutant removal. Such alterations can change the sen-
sitivity of organisms to other chemicals, resulting in hormesis
and resistance (Vaiserman, 2011; Roberts & Gavery, 2012;
Oziolor, De Schamphelaere & Matson, 2016; Calabrese &
Mattson, 2017; Ellis et al., 2021b). However, some of these
techniques rely on sequenced genomes, therefore, to bypass
such obstacles, new techniques have been developed [such
as reduced-representation bisulfite sequencing (RRBS-Seq),
epigenotyping by restriction-site associated DNA sequencing
(EpiRADseq), bisulfite-based restriction-site associated DNA
sequencing (BsRADseq), and epi-genotyping by sequencing
(epiGBS(; Schield et al., 2016; Trucchi et al., 2016; Van Gurp
et al., 2016]. Although invertebrate epigenetic research is in
its infancy, epigenetic changes can be a valuable source of
information for the development of innovative tools for
monitoring the effects of pollution (Brander, Biales &Connon,
2017). In a recent comprehensive review on the impact of pol-
lution on invertebrate epigenomes, Šrut (2021) highlighted
various exposure scenarios, epigenetic endpoints and methods
for detecting epigenetic impact. However, much work still
needs to be done before such tools can be used in models to
predict the impact of specific pollutants. Alterations in the epi-
genetic profile may also be linked to changes in the micro-
biome and changes to organism resistance to environmental
factors (Barno et al., 2021). The microbiome can also be
directly affected by pollution, ultimately leading to
adverse effects in the host (Lederberg & Mccray, 2001;
Haiser & Turnbaugh, 2013; Claus, Guillon & Ellero-
Simatos, 2016; Adamovsky et al., 2018). Studies of the
impact of pollution on the microbiomes of non-model
aquatic hosts include tests on the Manila clam Ruditapes

philippinarum (Bernardini et al., 2021), some sponge species
(Yang et al., 2011; Pita et al., 2013; Turon et al., 2019), reef-
building corals of the genus Acropora (Littman et al., 2009;
Ziegler et al., 2018, 2019), the planarian S. mediterranea

(Bijnens et al., 2021) and ascidians (Cahill et al., 2016b; Evans
et al., 2018;Goddard-Dwyer, L�opez-Legentil & Erwin, 2021).
These results suggest high potential for microbiomes as tools
to test the impact of pollution; however, the standardisation
of protocols is required to avoid methodological bias
(Evariste et al., 2019).

Environmental pollution can result in changes to population
composition, including the loss of native species and the
emergence of invasive species. Pollution can also impact phe-
notypic plasticity, which may adversely affect the accuracy of
traditional morphology-based taxonomic classifications of
organisms (Abdelhady et al., 2018). DNA barcoding is a
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genetic-based method for species classification that utilises
highly conserved regions flanking species-specific sequences,
which are amplified by polymerase chain reaction (PCR)
and sequenced (Hebert & Gregory, 2005). One commonly
used gene for this purpose in many animals is the mito-
chondrial cytochrome oxidase subunit 1 (CO1) gene.
The Barcode of Life Data System (BOLD), a global data-
base established in 2005, stores species-specific informa-
tion obtained using this approach from all over the
world, along with Linnaean classification, photographs
and collection sites (Ratnasingham & Hebert, 2007).
BOLD facilitates the identification of cryptic and invasive
species (Douek et al., 2020, 2021; Galil et al., 2021) and was
also used to identify phenotypic plasticity induced by pol-
lution (Weigand et al., 2011, 2019). DNA metabarcoding
(Pawlowski et al., 2018), which applies the same principles
as DNA barcoding, is a cost-effective tool for observing
biodiversity alterations across environments. This approach
involves using PCR amplicons from a variety of species
in environmental samples and then subjecting them to
high-throughput sequencing and bioinformatic analyses.
Alternatively, Droplet Digital PCR (ddPCR) can be
employed for water samples (Wood et al., 2018; Hernandez
et al., 2020). Standardised methods for collecting environ-
mental samples, such as from river streams or sediments,
are crucial for the reliability of such methods (Emilson et al.,
2017; Holman et al., 2019).

In addition to the use of genetic material extracted from
organisms, environmental DNA (eDNA) and environmental
RNA (eRNA) analyses of water or sediment samples are
promising approaches for detecting genetic material from
various sources, including microscopic organisms, physical
damage to animals and reproductive products (Wood
et al., 2020). eDNA- and eRNA-based methods offer benefits
over conventional methods, such as non-invasive sampling,
lower costs and improved detection sensitivity (Bohmann
et al., 2014; Rees et al., 2014; Valentini et al., 2016). eDNA
is already used to record aquatic organism distribution
(Lamy et al., 2021), while eRNA experiments are at a proof-
of-concept stage, enabling the detection of alternative gene
spliced transcripts or non-coding RNA species via an RNA
sequencing (RNA-seq) technique.

Quantitative trait loci (QTLs) are used to evaluate the
impact of pollution on species diversity by linking pollution resis-
tance with specific genomic regions/loci (gene–environment) or
gene–gene epistatic interactions. These approaches involve
crosses between resistant phenotypes and the comparison of
genetic polymorphisms of exposed/unexposed individuals.
Comprehensive methods like pooling-based sequencing
(pool-seq) sequencing and population resequencing are
replacing traditional methods like amplified fragment
length polymorphism (AFLP), microsatellites, single nucleo-
tide polymorphisms, and restriction site-associated DNA
sequencing (RADseq) to detect the responses of multiple
regions to multiple selective stressors and have successfully
been applied to fish populations. The coral species A. millepora
and Pocillopora damicornis have also successfully been used to

correlate environmental stressors with specific QTLs for
thermal stress, water clarity, eutrophication and high-
temperature stress conditions (Lundgren et al., 2013; Jin
et al., 2020).
These are just a few examples of the new methods that are

continually emerging and can be applied to non-model
aquatic invertebrates. Consequently, they eliminate bound-
aries in ecotoxicological studies, allowing broader ecotoxico-
logical research that considers the diversity of the animals,
the representation of their natural habitats and their role in
the food chain.

VI. INTEGRATION OF DATA FOR REUSE IN
(ECO)TOXICOLOGY AND ENVIRONMENTAL
RISK ASSESSMENT

Environmental risk assessment (ERA) is the process of
predicting the risk of adverse effects on the environment
caused by pollutants through successive steps of hazard iden-
tification, hazard characterisation, exposure characterisation
and risk assessment. The main outputs of ERA are risk
management and communication plans (Blasco & DelValls,
2008). Recent reports (including from the World Health
Organisation) have demonstrated that the integration of
health, safety and environmental (HSE) risk assessment
approaches is needed to protect human health and the envi-
ronment, a so-called One Health approach (Aguirre et al.,
2016). Integration improves the efficiency and quality of
decisions related to human health and ecological risk assess-
ments (Suter et al., 2005). In addition, the integration of
HSE risk assessment and risk-mitigation measures requires
the integration of scientific data, information and knowledge.
Integrated approaches in toxicity testing and assessment

(IATA) are already included in OECD testing recommenda-
tions. IATA is a practical, scientific approach to the analysis
of chemical danger relying on an integrated study of the
available data along with the development of new data
(experimentally and/or computationally; OECD, 2021).
The IATA approach of integration of knowledge, informa-
tion, and data may enable more comprehensive safety profil-
ing (Rivetti et al., 2020). The first step in ERA is hazard
assessment, but it is unrealistic to identify the hazards pre-
sented by all pollutants released into the environment.
Therefore, the reuse and integration of existing data, infor-
mation and knowledge represents a way forward to a more
holistic approach to ERA (Bennekou, 2019). Data, informa-
tion and knowledge integration in (eco)toxicology is facing
many challenges, which are not only related to informatics
and technical issues, but to an even greater degree to the
assessment of the weight of test outcomes and their overall
relevance (Neagu & Richarz, 2019). For example, available
studies vary in study design, methodology, and in the level
of detail reported. Regulators must therefore evaluate each
individual study for reliability in accordance with
good research practice (Schwab et al., 2022). Adherence to
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metadata content standards, i.e. an agreed list of common
metadata items and the standardisation of terminology and
definitions for these items is a prerequisite for quality data
sharing, reuse and integration. In addition to metadata stan-
dards, data reporting templates can also play an important
role in ensuring quality data sharing, reuse and integration.
Data reporting templates provide a standardised format for
reporting data, including metadata, and can help ensure that
important information is not omitted, and that data are
reported consistently across different data sets. At present, over
50 harmonised data entry templates for various types of studies
have been elaborated in the nanomaterial safety community,
including the physicochemical characterisation of materials,
hazard assessments (cell viability, genotoxicity, environmental
organism dose–response tests, omics) and the reporting of data
from exposure and release studies. The templates can be used
in other research domains and have already been extended
and adapted for MPs and advanced materials research. The
harmonised templates aim to make data presentation, interla-
boratory comparisons and meta-analyses more reliable and to
streamline the evaluation and regulation process. Data entry
templates are created collaboratively with the active involve-
ment of data providers. Once the layout and content are
agreed, the templates are integrated into the Template Wiz-
ard, which is an online tool allowing the sharing and down-
loading of dynamically customisable templates. The tool is
designed to be user-friendly and attractive to data providers,
as well as to improve awareness and reuse of existing templates
in new projects and when adding new (or extended) endpoints.
The online template validator allows self-evaluation of the
template and transformation by the open-source parser into
a machine-readable format (e.g. json or rdf) compliant with
the FAIR (findable, accessible, interoperable, reusable) princi-
ples (Jeliazkova et al., 2021).

The integration of data and knowledge is outlined by the
FAIR data principles (Wilkinson et al., 2016). This set of prin-
ciples is focused on ensuring that research objects are reus-
able, and will be reused, and thus become as valuable as
possible. The FAIR principles put specific emphasis on
enhancing the ability of machines automatically to find
and use the data, in addition to supporting its reuse by
individuals. The idea of being machine-actionable applies
in two contexts – first, when referring to the contextual
metadata surrounding a digital object (‘what is it?’), and second,
when referring to the content of the digital object itself (‘how do
I process it/integrate it?’). This means that domain experts
should also have a basic understanding of how to organise,
document, store and share data, to ensure they are properly
managed and can be understood and (re)used in the future.

VII. CERTAINTIES AND UNCERTAINTIES IN
ASSESSING AQUATIC ECOTOXICOLOGY

Species sensitivity distribution (SSD) models have
been established as a key tool for the ERA of chemicals

(Posthuma, Suter & Traas, 2002). SSDs consist of a statistical
approach to predict the potential biological impact of a
chemical in nature. SSDs simulate the range of sensitivity of
various species to a variety of chemical concentrations. These
tools are used to estimate the potentially affected fraction
(PAF) of species that will be harmed by exposure, and to
establish threshold concentrations. When using SSDs, it is
assumed that the species toxicity data represent a random
sample from a statistical distribution that is typical for a com-
munity or ecosystem. The precision of SSDs in predicting
environmental toxicity impact will rise as more data become
accessible for a variety of species. SSDs have been useful tools
for risk assessment purposes for decades, despite their numer-
ous limitations (Belanger & Carr, 2019).

De facto testing of the effects of chemicals is only possible on
a restricted number of species. Ecotoxicologists, therefore,
face the major problem of translating the measurements
acquired from the tested species into predictions of effects
on the wider range of species in aquatic ecosystems. A broad
comparison of the toxic concentrations of various classes of
compounds for some aquatic invertebrates has highlighted
that species belonging to highly diverse phyla, such as arthro-
pods and molluscs, exhibit a wide range of sensitivities
(Rosner et al., 2021). For example, a study on arthropods
comparing Deleatidium spp. and D. magna exposed to heavy
metals showed similar sensitivities to Cr6+ and Cu2+,
whereas a significantly higher sensitivity was observed in
Daphnia exposed to Cd2+ and Zn2+ (Hickey & Vickers, 1992).
Differences in sensitivity can be observed even among cryptic
species. For example, comparisons of two cryptic species of
the polychaete annelid Capitella found that Capitella sp. I pos-
sessed a greater ability to biotransform fluoranthene than
Capitella sp. S (Selck, Palmqvist & Forbes, 2003; Li, Bisgaard
& Forbes, 2004). The observation of such differences in
invertebrates, as opposed to vertebrates, could be explained
by the huge molecular diversity (divergence in protein
sequences, for example) arising during their evolutionary tra-
jectories. This molecular diversity could be directly linked to
disparities in inherent sensitivities to chemical compounds
dependent on specific monoamine oxidase (e.g. inhibition
of an enzyme or receptor by xenobiotics via their attachment
to specific sites of action; Chaumot et al., 2014) and is further
illustrated by the high sensitivity of arthropods to acetylcho-
linesterase (AChE)-inhibiting insecticides compared to
rotifers, molluscs, and annelids (Van Wijngaarden et al.,
2005; Bally et al., 2016). This wide molecular diversity also
results in unexpected xenobiotic toxicity in specific groups
of invertebrates; for example, the biocide TBT is responsible
for the abnormal development of the genital tract, with mas-
culinisation of females, in about 100 species of marine gastro-
pods (Migula, 2005).

To overcome the limitations of SSDs, trait-based
approaches have been proposed as complementary tools for
ERA. These approaches allow the deciphering of the mech-
anisms behind the effects of exposure and prediction of the
responses of species to chemicals with the same MOA. For
example, the SSD for various MOAs highlighted groups of
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species with different sensitivity levels. Arthropods were
classified as more sensitive than average, followed by nema-
todes, molluscs and annelids. However, bryozoans, cnidar-
ians and flatworms were never of above-average sensitivity
(Van den Berg et al., 2019). It is interesting to note that species
used routinely for ecotoxicological tests, e.g. Daphnia, are not
the most sensitive species (Van den Berg et al., 2019).

Another way to improve the accuracy of ecotoxicological
tests on aquatic organisms consists of designing adverse out-
come pathways (AOPs; OECD, 2017). AOPs serve as the
basis for mechanistically driven toxicological approaches
using a variety of toxicological data including details of
chemical interactions with a specific biomolecule, commonly
called the molecular initiating event (Ankley et al., 2010).
Toxicokinetic (TK) pathways together with toxicodynamics
(TD) are also key elements in the design of AOPs, as
TK pathways determine the concentration of chemicals in
an organism by considering adsorption–distribution–
metabolism–excretion (ADME) traits (McCarty & Mackay,
1993; Nyman, Schirmer & Ashauer, 2012), while TD
describes the interaction between the chemicals and the tar-
get(s) (McCarty & Mackay, 1993; Nyman et al., 2012). The
OECD actively supports AOP development to standardise
testing methods to assess substance toxicity. However, to date,
AOPs in aquatic organisms have not been fully developed.
They range from putative to partially characterised forms,
even in cases where toxicant effects are highly conserved across
species, such as those of organophosphates due to the presence
of conserved AChE receptors (Brockmeier et al., 2017).
Indeed, for other xenobiotics, such as heavy metals, interspe-
cies variation has been observed due to microevolutionary
processes leading to the acquisition of resistance mechanisms
(see review by Posthuma&Van Straalen, 1993; Chandrangsu,
Rensing & Helmann, 2017). Modification in the expression of
metallothioneins has been shown to cause a change in the
resistance capacity of adapted species. For instance, genotypes
with a specific metallothionein promoter are detected most
frequently in cadmium-tolerant populations of the springtail
Orchesella cincta in comparison to other O. cincta populations
(Costa et al., 2012). This adaptation is also observed in the
springtail Folsomia candida, which exhibits constitutive metal-
lothionein expression. Additional examples of adaptation have
been observed in natural populations of oligochaetes, mol-
luscs, crustaceans (Isopoda), myriapods, arachnids, aptery-
gotes and insects (Migula, 2005). Nevertheless, it is important
to remember that these adaptations are species dependent.
For instance, the isopod Porcellio scaber, considered an accumu-
lator of metals, has a smaller body size and starts to reproduce
earlier in polluted sites than in unpolluted sites, and shows dif-
ferent responses to O. cincta, which is a very rapid eliminator of
metals (Drobne, 1997;Migula, 2005). In addition to these spe-
cies’ adaptations to environmental stresses, increasing evi-
dence is accumulating on the potential contribution of the
host-associated microbiome to adaptation to environmental
stress. A prominent example is the change in the mammalian
gut microbiome in laboratory animals that results in altered
concentrations of inorganic arsenic metabolites in urine and

in increased sensitivity to arsenic toxicity (Lu et al., 2013;
Chi et al., 2019). Speciation of organoarsenic species in aquatic
organisms also highlights the importance of the microbiome
(Langdon et al., 2002; Rahman, Hasegawa & Lim, 2012;
Liebeke et al., 2013). The degradation of organic chemicals,
such as pesticides, by the host-associated microbiome has also
been demonstrated (Daisley et al., 2018; Fernandez et al., 2019;
Wang et al., 2020). In Hydra, an increased tolerance to copper
has been associated with the presence of microalgal symbionts
(Karntanut & Pascoe, 2005), while in metal-rich hydrothermal
vent environments, symbiotic bacteria onmussels (Bathymodiolus;
Hardivillier et al., 2004) protect their host by transforming
absorbed metal ions into metal particles. Additionally, micro-
bial symbionts of aquatic invertebrates frequently provide their
hosts with crucial micronutrients (Stock et al., 2021). As an
example, the settling of poriferan, cnidarian and mollusc
larvae requires bacteria. Chromatiales supply the amino
acid L-arginine to Amphimedon queenslandica to allow larvae
to settle successfully and metamorphose. Overall, even if
the role of the underlying mechanisms of microbiomes in
pollution adaptation are not always evident, case studies
suggest that associated microbiota can play a relevant role
(White & Torres, 2009).

VIII. DISCUSSION

This review summarises many (eco)toxicological studies on
chemicals affecting the aquatic environment, with a particu-
lar focus on several major aquatic invertebrate phyla, includ-
ing those represented by non-model organisms. It is clear that
interspecies and even intraspecies differences in sensitivity
and responses to toxicants do occur (Hendriks et al., 2013).
The key issue remains the heterogeneity of the species and
the number of endpoints required to enable the design of reli-
able predictive toxicity platforms, including tools for the esti-
mation of ecological risks and decision-making processes.
Currently, standardisation by the main international
organisations is available for only a few species representative
of a limited number of invertebrate phyla: Arthropoda,
Mollusca, and Annelida (Table 1). Sea urchins and sand dol-
lars are the only echinoderms for which there are standar-
dised protocols, while C. elegans, the nematode model
species recommended for freshwater toxicity studies, is not
even typically an inhabitant of fresh water. In some cases,
the selected model organisms include invasive species such as
Corbicula fluminea [ENV/JM/MONO(2019)11]. By contrast,
many ecosystem engineers and keystone species like sponges
and corals are not represented in the standardised protocols,
and some pollution-related properties like hormesis, micro-
biome changes and population diversity properties are studied
de facto using varied protocols. This is the current status of the
field, although a growing body of information has been accu-
mulated on corals, sponges and ascidians. Moreover, for pre-
dictive models like SSD, recommendations regarding the
minimum number of species to be tested exceed this: eight
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for the US EPA and 5–8 for the European Union (for SSD;
TenBrook et al., 2009). It is therefore logical to extend testing
to additional taxa. However, as demonstrated in Fig. 1, most
of the aquatic (eco)toxicological research performed in the last
decade still used vertebrates (54.2%), and the most studied
invertebrates were arthropods (12.5%) and molluscs (19%).
Performing an additional search of Web of Science (see Q3 and
Q4 in Table S1 for search terms) for the genera listed in
Table 1 demonstrated that 58% and 32% of all tests per-
formed with arthropods and molluscs, respectively, used only
this small subset of model species. Clearly, only a limited and
biased subset of taxa still make up a substantial part of toxicity
testing.

The available results from non-model animals from
Porifera, Cnidaria, Platyhelminthes and Tunicata encourage
the use of species in these phyla as reliable model organisms
for acute and chronic tests (Fig. 9), with similar endpoints to
those used for testing the impact of chemicals on standard
models (Table 2) or with additional new tests. Some tests
based on non-standard species are relatively well established
and generally accepted (although non-validated), such as H.
attenuata reproduction, survival, and development tests used
as indicators of teratogenic effects [ENV/MC/CHEM(98)
19 (Johnson et al., 1982; Johnson & Gabel, 1983)]. A draw-
back of the lack of standardisation is the creation of multi-
ple laboratory-specific protocols, which affects the
outcomes and limits or complicates the inclusion of the
resulting data into predictive models. In other cases, cer-
tain types of tests may be performed with unsuitable

models, because standardisation does not exist for the best
animal model. Additionally, major regulatory frame-
works, including the Canadian Environmental Protection
Act, the US Toxic Substances Control Act, and the ECHA
REACH initiative, all encourage increased reliance on in

silico approaches, with the latter being based on the acute
toxicity of pollutants to a few species only, such as Daphnia
and fish (Zhou et al., 2021). The Danish QSAR Database
(Danish QD; DTU, 2018), the virtual models for property
evaluation of chemicals within a global architecture
(VEGA; Benfenati, Manganaro &Gini, 2013), the Kashinhou
tool for ecotoxicity (KATE; Furuhama et al., 2010), the toxicity
estimation software tool (TEST; EPA, 2016h), theQSAR tool-
box developed by the OECD (OECD, 2014), and the
ecological structure activity relationships (ECOSAR;
Mayo-Bean et al., 2012), are several of the in silico technol-
ogies created for ERA and utilised to support chemical
regulation.

The preservation of aquatic biodiversity is now widely
recognised as an important conservation goal, which requires
the use of effective toxicology and ecotoxicology tools as well
as modern safety assessment technologies. Hazard identifica-
tion and prompt responses are necessary for pollutants such
as waste, micro- and nanopollution (including nanoplastics),
endocrine disruptors, and persistent chemicals, as they can
have harmful effects. In parallel, newly emerging supporting
technologies are becoming increasingly affordable and
accessible. These include various omics-based applications,
microbiomics, metabarcoding (Pawlowski et al., 2018),

-

Fig. 9. Summary of the broad-taxa approach proposed herein for environmental assessment and ecotoxicological studies.

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.

A broad-taxa approach as an important concept 29

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13015 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



automated species identification technologies (Gorsky et al.,
2010; Le Bourg et al., 2015; Kalafi, Town & Dillon, 2018;
Wäldchen & Mäder, 2018, First et al., 2021), in vitro technol-
ogy (Rosner et al., 2021), bioinformatics, big data processing
techniques and increased computing power. Omics technol-
ogies will facilitate studies on non-model organisms; in vitro

technology will enable the simultaneous analysis of samples
from many species using a large number of tests; while tech-
nologies like DNA barcoding (Weigand et al., 2019; Paz &
Rinkevich, 2021) and automated species identification will
reduce reliance on professional taxonomists, facilitating the
processing of large amounts of data originating from (eco)
toxicological tests performed on a variety of aquatic species.
By increasing the number and diversity of species used in tox-
icity assessment studies and incorporating these advances,
predictive models can adopt a more precise ‘broad-taxa
approach’ (Fig. 9). Transformation in research approaches
is evidenced by the recent increase in tests using non-model
species performed using newly emerging techniques (Fig. 1),
especially with coral and sponges. It is important for the sci-
entific community to take a more proactive role in integrat-
ing large volumes of experimental data into formats that
are user-friendly and readily accessible, further influencing
the ways (eco)toxicity studies are performed under interna-
tional regulations, such as the EU Chemicals Strategy for
Sustainability (https://www.chemistryworld.com/news/eu-
commits-to-overhaul-of-chemicals-legislation/4012615.article)
and the EUGreen Deal environmental programme (https://
ec.europa.eu/info/strategy/priorities-2019-2024/european-
green-deal_fr). Integrated approaches to test and assess are
already recommended by the OECD via IATA, but our goal
should be holistic. The term ‘holism’ describes the necessity
for knowledge governance between various knowledge
sources and decision-making levels, represented by scientists,
experts, citizens and laypeople, as well as administrative and
political decision-makers (Giebels et al., 2020). This necessi-
tates problem-focused collaboration between multiple scien-
tific fields and non-scientific actor groups in order to produce
transdisciplinary knowledge.

Rigorous reporting of research results is crucial for the
scientific community to advance. A minimum annotation
checklist for reporting research results needs to be extended
beyond omics research and should be applied to other fields,
including environmental sciences. The application of artifi-
cial intelligence has opened up new and exciting possibilities
in a holistic and integrative way, to study the complexity of
biological systems (Johnson et al., 2021).

IX. CONCLUSIONS

(1) The preservation of the aquatic environment and its
biodiversity necessitates the application of state-of-the-art
toxicological and ecotoxicological tools and the development
of accurate prediction tools.

(2) The field of (eco)toxicology is experiencing the emergence
of new methods and technologies that can be applied to all
living organisms, including in vivo, in vitro, and in silico

methods, which may eventually lead to a reduction in ani-
mal experimentation.
(3) Accurate evaluation of the impact of toxicants, and the
prediction of their mode of action requires the use of a wide
range of animal models that encompass both interspecies and
intraspecies variations, as well as the normal geographic
distribution and habitat of each model.
(4) A broad range of endpoints, spanning multiple levels of
organisation (from subcellular to population level) and
including aquatic non-model invertebrates, is necessary to
gain a comprehensive understanding of pollution impacts.
(5) Standardisation and predictive models are needed to
compare data obtained by different groups and on different
animal models, further leading to a comprehensive global
approach to aquatic toxicology.
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Balian, E. V., Segers, H., Lévèque, C. & Martens, K. (2008). The freshwater
animal diversity assessment: an overview of the results. Hydrobiologia 595,
627–637.

Ballarin, L.,Cima, F., Floreani, M.& Sabbadin, A. (2002). Oxidative stress induces
cytotoxicity during rejection reaction in the compound ascidian Botryllus schlosseri.
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 133, 411–418.

Ballarin, L., Cima, F. & Sabbadin, A. (1995). Morula cells and histocompatibility
in the colonial ascidian Botryllus schlosseri. Zoology Science 12, 757–764.

Ballarin, L., Hobmayer, B., Rosner, A. & Rinkevich, B. (2022). Somatic
expression of stemness genes in aquatic invertebrates. In Advances in Aquatic

Invertebrate Stem Cell Research: From Basic Research to Innovative Applications (eds L.
BALLARIN, B. RINKEVICH and B. HOBMAYER), pp. 95–171. Basel, MDPI.

Ballarin, L., Karahan, A., Salvetti, A., Rossi, L., Manni, L., Rinkevich, B.,
Rosner, A., Voskoboynik, A., Rosental, B., Canesi, L., Anselmi, C.,
Pinsino, A., Tohumcu, B. E., Kokalj, A. J., Dolar, A., ET AL. (2021). Stem

Biological Reviews (2023) 000–000 © 2023 Cambridge Philosophical Society.

A broad-taxa approach as an important concept 31

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13015 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



cells and innate immunity in aquatic invertebrates: bridging these seemingly
disparate disciplines for new discoveries in biology. Frontiers in Immunology 12, 688106.

Bally, J.,McIntyre, G. J., Doran, R. L., Lee, K., Perez, A., Jung, H., Naim, F.,
Larrinua, I. M.,Narva, K. M. &Waterhouse, P. M. (2016). Inplant protection
against Helicoverpa armigera by production of long hpRNA in chloroplasts. Frontiers of
Plant Science 7, 9.

Baranzini, N., Pulze, L., Acquati, F. & Grimaldi, A. (2020). Hirudo verbana as an
alternative model to dissect the relationship between innate immunity and
regeneration. Invertebrate Survival Journal 17, 90–98.

Barboza, C. A. M., Martins, C. C. & Lana, P. D. C. (2015). Dissecting the
distribution of brittle stars along a sewage pollution gradient indicated by organic
markers. Marine Pollution Bulletin 100, 438–444.

Barboza, L. G. A. & Gimenez, B. C. G. (2015). Microplastics in the marine
environment: current trends and future perspective.Marine Pollution Bulletin 97, 5–12.

Barnard, J. L. (1983). Freshwater Amphipoda of the World. Hayfield Associates, Mt.
Vernon, Virginia.

Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S.

(2021). Host under epigenetic control: a novel perspective on the interaction
between microorganisms and corals. Bioessays 43, e2100068.

Bart, M. C., de Kluijver, A., Hoetjes, S., Absalah, S., Mueller, B.,
Kenchington, E., Rapp, H. T. & de Goeij, J. M. (2020). Differential processing
of dissolved and particulate organic matter by deep-sea sponges and their
microbial symbionts. Scientific Reports 10, 17515.

Bastami, K. D., Taheri, M., Foshtomi, M. Y., Haghparast, S.,
Hamzehpour, A., Bagheri, H., Esmaeilzadeh, M. & Molamohyeddin, N.

(2017). Nematode community structure in relation to metals in the southern of
Caspian Sea. Acta Oceanologica Sinica 36, 79–86.

Bat, L. (2005). A review of sediment toxicity bioassays using the amphipods and
polychaetes. Turkish Journal of Fisheries and Aquatic Sciences 5, 119–139.

Batel, R., Bihari, N., Rinkevich, B., Dapper, J., Schaecke, H.,
Schroeder, H. C. & Mueller, W. E. G. (1993). Modulation of organotin-
induced apoptosis by the water pollutant methyl mercury in a human
lymphoblastoid tumor cell line and a marine sponge. Marine Ecology Progress Series

93, 245–251.
Batista, D., Giling, D. P., Pradhan, A., Pascoal, C., C�assio, F. &

Gessner, M. O. (2021). Importance of exposure route in determining nanosilver
impacts on a stream detrital processing chain. Environmental Pollution 290, 118088.

Batista, D.,Muricy, G., Rocha, R. C. &Miekeley, N. F. (2014). Marine sponges
with contrasting life histories can be complementary biomonitors of heavy metal
pollution in coastal ecosystems. Environmental Science and Pollution Research 21, 5785–
5794.

Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. (2002). Carbon nanotubes-
the route toward applications. Science 297, 787–792.

Bauvais, C., Bonneau, N., Blond, A., Pérez, T., Bourguet-Kondracki, M.-L.
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Gunnarsson, J. S. & Sköld, M. (1999). Accumulation of polychlorinated biphenyls
by the infaunal brittle stars Amphiura filiformis and A. chiajei: effects of eutrophication
and selective feeding. Marine Ecology Progress Series 186, 173–185.
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XII. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. The lunar-controlled life cycle of Platynereis dumerilii.
After fertilisation, the zygote starts segmentation, giving rise
to a nectochaete larva (72 h) (stomodeum and prototroch
highlighted in green). After the first metamorphosis, the juve-
nile worm forms and starts to feed. After 8–10 days of ben-
thic feeding, the small worm undergoes cephalic
metamorphosis to become an atoke worm inside its tube,
which then grows continuously until sexual maturation. After
sexual maturation (female shown in yellow; male in red), the
epitoke worm leaves its tube and swims into the water col-
umn, eventually to take part in mass spawning coordinated
by the lunar cycle. Drawing modified after Schenkelaars &
Gazave (2021) and Fischer & Dorresteijn (2004) by K. M.
Karahan and A. Karahan.
Table S1. List of search terms used inWeb of Science. Q1 was
used to identify all publications on marine and freshwater
species in the domains of ecotoxicology, toxicology, and pol-
lution in the last 10 years (see green numbers in Fig. 1). Q2
was used to identify all publications on marine and freshwa-
ter species based on omics technology in the domains of eco-
toxicology, toxicology, and pollution in the last 10 years
(see red numbers in Fig. 1). Q3 and Q4 are the search terms
used to assess the proportion of studies that focus only on the
subset of taxa listed in Table 1 as commonmodel taxa used in
standardised regulatory tests.
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