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• Temporal trends in spatial phytoplank-
tonheterogeneity across lakes are quan-
tified.

• Heterogeneity of environments and
phytoplankton shows clear seasonality.

• The seasonality tends to be less marked
in deep than in shallow lakes.

• Restoration measures cause homogeni-
sation of environments and phytoplank-
ton.

• Climates haveweak cascading effects on
phytoplankton heterogeneity.
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World-wide, reducing the external nutrient loading to lakes has been the primary priority of lakemanagement in
the restoration of eutrophic lakes over the past decades, and as expected this has resulted in an increase in the
local environmental heterogeneity, and thus biotic heterogeneity, within lakes. However, little is known about
how the regional spatial heterogeneity of lake biotic communities changes with restoration across a landscape.
Using a long-term monitoring dataset from 20 Danish lakes, we elucidated the seasonal and long-term trends
in the spatial heterogeneity of climate, local abiotic variables and phytoplankton communities over two decades
of restoration and climate change at landscape level.We found significant seasonality in the spatial heterogeneity
ofmost climatic and local drivers aswell as in the total beta diversity (Sørensen coefficient) and its turnover com-
ponents (Simpson coefficient) of phytoplankton communities among the lakes. The seasonality tended to be less
marked in deep than in shallow lakes. We found significant spatial homogenisation of most local drivers (except
for alkalinity) and phytoplankton communities after two decades of restoration and that turnover dominated the
temporal responses of the total beta diversity of phytoplankton communities. Path analyses showed that the ho-
mogenisation of phytoplankton communitieswasmainly due to a decrease in spatial heterogeneity of total phos-
phorus and Schmidt stability in shallow lakes and to a decrease in spatial total phosphorus and total nitrogen
heterogeneity in deep lakes. However, albeit weakly, the spatial heterogeneity of the phytoplankton
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communities was affected indirectly by climatic warming in both shallow and deep lakes and directly by wind
speed in shallow lakes. We conclude that restoration of eutrophic lakes may lead to an increase in the local het-
erogeneity of phytoplankton communities at lake scale and an increase in homogeneity at landscape scale.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Understanding how community composition varies over space and
time (i.e., beta diversity) is a central goal in community ecology
(Whittaker, 1972; Anderson et al., 2011). In freshwater lakes, eutrophi-
cation is a key driver of the community dynamics of phytoplankton
(Reynolds, 1984; Harper, 2012). Usually it leads to a marked reduction
of environmental heterogeneity and thereby filtering out of species
that are sensitive to the characteristics of eutrophic conditions such as
shading, hypoxia, high ammonia levels and reduced grazing by zoo-
plankton (Reynolds, 1984). This could greatly diminish community dis-
similarity among sites and thus lead to biotic homogenisation, at least at
local scale (Rahel, 2002; Menezes et al., 2015; Cook et al., 2018;
Monchamp et al., 2018; Salgado et al., 2018; Wengrat et al., 2018),
which may result in degradation of biological diversity and freshwater
ecosystem functions (Rahel, 2002; Salgado et al., 2018). To improve
the ecological quality of lakes, major efforts have been made in many
countries to reduce the external nutrient loading in order to promote
restoration (Coveney et al., 2005; Jeppesen et al., 2005; Jeppesen et al.,
2007b; Pomati et al., 2012). An increase in habitat heterogeneity (due
to, e.g., macrophyte recovery and high water transparency creating
higher benthic production) and thereby biotic heterogeneity would be
expected during restoration (Jeppesen et al., 2002; Lauridsen et al.,
2003; Jeppesen et al., 2007a; Hilt et al., 2013;, Özkan et al., 2016;
Lefcheck et al., 2018;Murphy et al., 2018). However, the effects of exter-
nal nutrient loading reduction and internal nutrient loading may vary
over time from lake to lake, largely depending on the specific measures
introduced, and with different effects on the local abiotic and biotic
community composition (Jeppesen et al., 2002; Lauridsen et al., 2003;
Søndergaard et al., 2003; Anneville et al., 2005; Jeppesen et al., 2005;
Pomati et al., 2012). Furthermore, changes in biotic community dynam-
ics may vary significantly among the lakes in a given region depending
on changes in trophic state or large-scale forcing (e.g., climatewarming)
(Anneville et al., 2005; Jeppesen et al., 2005). Therefore, the temporal
abiotic and biotic responses will eventually differ among lakes at the re-
gional scale, and little is known about how spatial abiotic and biotic het-
erogeneity varies with restoration between lakes across a large
landscape.

During the last 1 to 5 decades, external nutrient loading reduction
following eutrophication has been applied to many lakes worldwide,
and in some lakes this has coincided with a weak increase in summer
air and surface water temperatures (Coveney et al., 2005; Jeppesen
et al., 2005; Jeppesen et al., 2007b; Pomati et al., 2012). Previous studies
have described the effects of restoration on the physico-chemical condi-
tions and limnology of lakes, showing decreases in-lake total phospho-
rus/nitrogen (TP/TN) and chlorophyll a (chl a) concentrations and
increases in Secchi depth (Köhler et al., 2005; Søendergaard et al.,
2005; Dove and Chapra, 2015). As for phytoplankton communities, res-
toration may be accompanied by a local (within-lake) increase in rich-
ness and compositional changes (Anneville et al., 2005; Jeppesen
et al., 2005; Özkan et al., 2016). Moreover, on a short time scale, studies
have shown significant seasonal responses by local abiotic variables and
biotic communities (Søendergaard et al., 2005; Thackeray et al., 2008;
Zhang et al., 2011), as well as plastic changes in the seasonal succession
and phenology of phytoplankton communities during restoration
(Winder and Cloern, 2010; Weithoff et al., 2015; Anneville et al.,
2018; Pálffy and Vörös, 2019). Remarkably, both local abiotic variables
and biotic communities exhibit highly different responses between
shallow anddeep lakes, largely reflecting themuch stronger benthic pe-
lagic coupling and the lack of stratification in shallow lakes (Jeppesen
et al., 2005; Søendergaard et al., 2005; Salmaso, 2010; Menezes et al.,
2015; Dolman et al., 2016). Although many studies have indicated
that global warming could potentially interact with restoration in
influencing local phytoplankton communities (Anneville et al., 2005;
Thackeray et al., 2008; Pomati et al., 2012; Özkan et al., 2016; Verbeek
et al., 2018), the role of spatial climatic heterogeneity in determining
the spatial heterogeneity of local abiotic variables and biotic community
dynamics has yet to be fully explored.

Using an extensive dataset (1989–2008) from 20 Danish lakes
(Özkan et al., 2014; Özkan et al., 2016), we assessed the seasonal and
long-term trends in the spatial heterogeneity of phytoplankton commu-
nity composition (i.e., spatial beta diversity) across lakes (regional
scale) and related these to climatic (e.g., air temperature, precipitation,
solar irradiance, wind speed, etc.) and local abiotic drivers (e.g., water
environments, considering factors such as nutrients, chlorophyll a, pH,
water temperature, suspended solids, Secchi depth, etc.). Our study ad-
dressed the following questions: 1) how does the spatial heterogeneity
of climatic and local abiotic drivers across lakes vary at seasonal scale
(within year) and long time scale (among years)? We hypothesised
that the spatial heterogeneity of local abiotic variables across lakes
would decrease (i.e., the lakes would become more similar) because
most highly loaded lakes have undergone a strong decrease in external
loading (Søendergaard et al., 2005); 2) how does the spatial beta diver-
sity of phytoplankton communities vary at seasonal and long time scale,
and how are these patterns controlled by climatic and local abiotic
drivers? We hypothesised that local abiotic variables, especially of
water nutrients (e.g., TP and TN), would be the most important drivers.
Specifically, we further elucidated how temporal trends in spatial abi-
otic and biotic heterogeneity differ between shallow and deep lakes
and how the relative importance of climatic and local abiotic drivers
varies in determining the spatial patterns of phytoplankton communi-
ties between shallow and deep lakes, expecting depth-depending re-
sponses of environments and phytoplankton to nutrient loading
(Jeppesen et al., 2005; Søendergaard et al., 2005; Dolman et al., 2016).

2. Materials and methods

2.1. Data collection

Twenty lakesweremonitored between 1989 and 2008 as part of the
Danish monitoring programme on the aquatic environment (Fig. S1).
Winter samples (December–February) were excluded due to varying
sampling intervals between lakes and years, with some lakes not
being sampled during winter in some years because they were frozen.
The average sampling interval of the lakes was 14 days fromMay to Oc-
tober and 30 days in the other months included. The total sampling fre-
quency was 360 for each lake across the study period (1989–2008).
Phytoplankton samples were taken mid-lake at depth-integrated loca-
tions covering the photic zone (i.e., 2*times the Secchi depth). Details
on plankton sampling, identification, counting and measurements of
abiotic variables for 17 of the 20 lakes can be found in Özkan et al.
(2014). For the remaining 3 lakes (Furesoen Storeso, Engelsholm, Kvie
So), the sampling methods and frequency were the same as described
in Özkan et al. (2014) and followed the same sampling protocol. All
taxa were aggregated to genus level due to variation in the degree of
species level identification between the different plankton groups and
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time and for the purpose of avoiding the risk of effects of variation in the
identification skills of the taxonomists. The phytoplankton data were
screened for potential inconsistencies and corrections were made
using an inclusive approach according to Özkan et al. (2014), involving,
for example, recalculation of the missing information (e.g., biomass
being registered without counting) using original information or a rep-
resentative average for the taxon in question.

We collected samples for the analysis of lakewater chemistry simul-
taneously with the phytoplankton samples from the photic zone. The
local abiotic variables considered included lake water temperature
(WT), Schmidt stability index (an index of water column stratification
calculated from temperature profiles) (Idso, 1973), total phosphorus
(TP), total nitrogen (TN), chlorophyll-a (Chl-a), silicate (SiO2),
suspended solids (SS), Secchi depth (SD), pH and total alkalinity (TA).
We measured WT at one-metre intervals at the deepest point of the
lake and calculated the Schmidt stability index according to Matlab
codes from Lake Analyser software (Read et al., 2011) whenWTwas re-
corded at least to the mid-depth of the lake. Climatic variables included
meanair temperature,wind speed, solar irradiance (fromdaily averages
interpolated to 20 km grids) and precipitation (from daily averages in-
terpolated to 10 km grids and corrected for wind and altitude depend-
ing on the month of the year, Danish Meteorological Institute) (Özkan
et al., 2014).

2.2. Spatial heterogeneity of environmental variables and phytoplankton
communities

Spatial heterogeneitywas defined as the spatial variability or dissim-
ilarity among lakes at each sampling campaign, yielding n=360 obser-
vations for each index of spatial heterogeneity for each variable.
Univariate (for each variable) and multivariate (all variables handled
in two sets: climatic and local abiotic variables) spatial heterogeneity
was estimated separately for climatic and local abiotic drivers.

The spatial heterogeneity for each climatic and local abiotic driver
was calculated as the coefficient of variation (CV: standard deviation di-
vided by the mean of the data) for all lakes at each sampling event.

Multivariate spatial heterogeneity for climate drivers was calculated
as the Euclidean dissimilarity coefficient (i.e., the shortest distance be-
tween two sampling points in an Euclidean space where each environ-
mental variable constitutes an axis) of mean air temperature, wind
speed, solar irradiance and precipitation among lakes for each time
point of the time series (Gower and Legendre, 1986).

Multivariate spatial heterogeneity for local abiotic driverswas calcu-
lated as the Euclidean dissimilarity coefficients of Chl-a, pH, Secchi
depth, SiO2, SS and alkalinity among lakes for each time point in the
time series. TP and TN were not included in these metrics because
they were also considered as important dependent variables in the
models (e.g., generalized multilevel path models).

Spatial heterogeneity of phytoplankton communities was calculated
as the Sørensen dissimilarity coefficient among lakes,which can be con-
sidered as the overall total beta diversity at regional scale (Baselga,
2010). The Sørensen dissimilarity coefficient of phytoplankton commu-
nities was separated into the Simpson dissimilarity coefficient (a mea-
sure of turnover without influence of richness differences) and the
nestedness dissimilarity coefficient (a measure of nestedness resulting
from richness differences) of phytoplankton communities (Baselga,
2010; Legendre, 2014).

The spatial heterogeneity analysis of variables was conducted sepa-
rately for shallow lakes (N = 12, mean depth < 3 m) and deep lakes
(N=8, mean depth > 3 m) for each time point of sampling (Table S1).

2.3. Statistical analysis

The time series of the spatial heterogeneity of all abiotic and biotic
variables were separated into seasonal trends, long-term trends and re-
sidual variability with generalized additive models (GAM) using the
“gam” function and cubic regression spline from the R-package “mgcv”
(Wood, 2017). GAM can identify a nonlinear relationship between var-
iables with different smoothing methods and in this way reveal non-
linearities and abrupt changes hidden in the time series. We specified
a Gaussian normal distribution as family for the predictors in the GAM
models.

We estimated the significance (P < .05) of each variable in the sea-
sonal trends from the GAM results, a significant trend indicating occur-
rence of seasonality. We calculated Pearson correlation coefficients to
compare the correlation among the seasonal trends in spatial heteroge-
neity of all the tested variables.

Moreover, we assessed the significance of long-term trends for the
spatial heterogeneity of each tested variable by regressing de-
seasonalised residuals versus year using generalized linear models.
The de-seasonalised residuals were derived from GAM models
extracting seasonal trends for each variable andwere constantly around
the mean and variance of months.

We assessed how the spatial heterogeneity of climatic and local abi-
otic variables governed the spatial heterogeneity (beta diversity) of
phytoplankton communities using two complementary approaches.
Firstly, we modelled the beta diversity metrics of phytoplankton (total
beta diversity, spatial turnover, nestedness) as a function of the hetero-
geneity of climatic and local abiotic variables using ordinary least
squares regressions. All model variableswere de-seasonalised residuals.
We checked if temporal dependence was a problem for our models and
included temporal structure in the models using the corArma function
(Zuur et al., 2009). We applied model selection using second-order
Akaike's information criterion (AIC) to select the best models with the
most important explanatory variables for the beta diversity coefficients.
We only selectedmodelswith delta AIC< 2 relative to the bestmodel as
suggested by Burnham and Anderson (2002). We calculated the sum of
Akaike weights including all models to evaluate the relative importance
of explanatory variables. We performed model selection and model av-
eraging using functions of the “MuMIn” package (Barton, 2014).

Secondly, we applied generalized multilevel path models (GMPM)
to test multivariate relationships among the spatial beta diversity of
phytoplankton communities and the spatial heterogeneity of TP, TN,
water temperature and Schmidt stability aswell as themultivariate spa-
tial heterogeneity of the remaining climatic and lake water variables
(Shipley, 2009). GMPMswere fitted using a d-sep approach as proposed
by Shipley (2009), which is based on an acyclic graph that describes the
hypothetical multi-variate relationships and independence claims be-
tween variables. This approach was preferred instead of the standard
SEM (with latent variables) because it can include the non-normal
data, temporal and spatial dependence error structures between vari-
ables and small sample sizes that occur widely in ecological datasets
(Shipley, 2009). We performed the GMPMs and generated the causal
networkwith all componentmodels using the “piecewiseSEM” package
inR (Lefcheck, 2016).Ourmodels included several key paths: 1) climatic
variables influencing water temperature and Schmidt stability; 2) TP,
TN, water temperature and Schmidt stability affecting environmental
heterogeneity and phytoplankton beta diversity; 3) environmental het-
erogeneity affecting phytoplankton beta diversity. In addition, we in-
cluded the potential paths by which climate, water temperature and
Schmidt stability affect TP and TNalthough changes in TP and TNmostly
reflected the reduced external nutrient loading. As the directions of the
TP and TN paths were not hypothesised, we included an additional cor-
relation between TP and TN in the GMPMs and a significant correlation
was observed between TP and TN inboth shallow anddeep lakes. Before
we conducted the GMPMs, we applied generalized linear models with
temporal autoregressive error structures (i.e., corArma function) to ex-
amine separately each hypothesised path. We used Shipley's test of di-
rectional separation to estimate the goodness of fit for each path model
(Shipley, 2009), a chi-squared test of Fisher's C statistic to test the signif-
icance (P > 0.05) of the path models (Shipley, 2013) and the AICc pro-
cedure to select the best model (Shipley, 2013). Notably, the
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interaction terms were excluded according to the AICc procedure. We
determined the coefficient of determination (R2) for each component
model, which can be used to assess the variance explained across the
set of models in the GMPMs. We used standardised path coefficients
to present the direct, indirect and total effects of the predictors (Grace
and Bollen, 2005). The strength of direct effects were defined as the
standardised path coefficient, which is a unitlessmeasure of association
and thus can be compared for the same relationship in different models
and for different relationships within and among models. Standardised
coefficients are also useful for computing indirect effects. The strength
of indirect effects can be calculated by multiplying the standardised
path coefficients along the path. For example, we computed the indirect
pathway from TP to environmental heterogeneity to spatial turnover of
phytoplankton by multiplying the path coefficients. The strength of
total effects was calculated as the sum of direct and indirect effects.

All statistical tests were conducted separately for shallow and deep
lakes, respectively, and were performed using R version 3.51 software
(R Core, 2013).

3. Results

3.1. Seasonal trends in spatial abiotic and biotic heterogeneity

In the time series (1989–2008), solar irradiance (SI), wind speed
(WI) and pH showed much lower spatial heterogeneity (mean
CV < 0.6, Table 1) than all the other local abiotic variables (Table 1).
Among all the climatic and local abiotic variables, spatial heterogeneity
tended to be higher for shallow lakes than for deep lakes, except for SS
(Table 1). The total beta diversity of phytoplankton (the Sørensen coef-
ficient) was typically higher in deep than in shallow lakes, which could
mainly be attributed to higher spatial turnover (i.e., Simpson coeffi-
cient) rather than to changes in spatial nestedness (Table 1).

The spatial heterogeneity of climatic variables, local abiotic variables
and the phytoplankton community composition exhibited significant
seasonal trends (Table 1, Figs. 1, S2 & S3), except for air temperature
(AT) and precipitation in both shallow and deep lakes, the Schmidt sta-
bility index and TA in shallow lakes and the spatial nestedness of
Table 1
Mean and range values of the coefficient of variations of climate variables and local abiotic va
variables), environmental heterogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, p
of phytoplankton: Sørensen coefficient (i.e. total beta diversity), Simpson coefficient (beta di
nestedness-resultant richness differences) across two decades ofmonitoring. Explained varianc
significant values in bold. All values are reported separately for shallow and deep lakes.

Variables Shallow lakes

Mean Range Var.exp

Climate variables
Air temperature 0.08 0.08–4.43 0.012
Solar irradiance 0.1 0.01–0.51 0.131
Precipitation 0.52 0.09–3.09 0.024
Wind speed 0.16 0.03–0.43 0.192
Climatic heterogeneity 0.48 0.13–1.14 0.085

Local abiotic variables
Water temperature 0.16 0.02–0.84 0.431
Schmidt stability 2.04 0.61–3.46 0
Total phosphorus 0.93 0.21–1.9 0.159
Total nitrogen 0.74 0.28–1.31 0.14
Chlorophyll-a 1.06 0.35–2.1 0.055
pH 0.15 0.01–0.25 0.116
Silicate 1.05 0.06–2.36 0.3
Secchi depth 0.73 0.11–1.27 0.151
Suspended solids 0.78 0.28–1.6 0.063
Alkalinity 0.84 0.24–1.69 0.015
Environmental heterogeneity 2.44 0.97–3.18 0.421

Spatial beta diversity and its component
Total beta diversity 0.88 0.64–0.94 0.23
Spatial turnover 0.82 0.56–0.91 0.214
Spatial nestedness 0.06 0.01–0.2 0.116
phytoplankton in deep lakes. Seasonality explained between 5.3%
(Chl-a) and 43.1% (water temperature) of the variability in the data
(Table 1). For shallow lakes, the heterogeneity of water temperature
was well explained by seasonality (Table 1), with lower heterogeneity
during summer and higher heterogeneity in early spring and autumn
(Fig. 1). Climatic heterogeneity as well as the spatial nestedness of phy-
toplankton displayed similar seasonal trends, with the lowest heteroge-
neity during early summer between day 150 and 200 and higher
heterogeneity in spring and autumn (Fig. 1). The spatial heterogeneity
of lake nutrient concentrations showed remarkable opposite patterns
for TP and TN (Fig. 1). Total beta diversity and spatial turnover showed
consistent seasonal trends, with more dissimilar phytoplankton com-
munities in lakes during summer than in the other seasons. For the
deep lakes, seasonal trends in the climate heterogeneity of water tem-
perature, total beta diversity and the spatial turnover of phytoplankton
demonstrated similar patterns as for the shallow lakes (Fig. 1). How-
ever, the seasonal trends were less pronounced for the CV of TP and
TN and the environmental heterogeneity and spatial nestedness of phy-
toplankton in the deep vs. the shallow lakes (Table 1), which showed a
more similar seasonal distribution pattern (Fig. 1).

In the shallow lakes, the seasonal trends in total beta diversity as
well as spatial turnover were strongly negatively associated with the
CV of air temperature, solar irradiance, water temperature, TN, total al-
kalinity and climatic heterogeneity and positivelywith the CV of precip-
itation, TP, pH, silicate, Secchi depth, suspended solids and
environmental heterogeneity (Table S2). Spatial nestedness was
strongly positively associated with the CV of solar irradiance and cli-
matic heterogeneity and negatively associated with the CV of precipita-
tion and silicate (Table S2). In deep lakes, the seasonal trends in total
beta diversity as well as spatial turnover were strongly negatively
associated with the CV of air temperature and water temperature and
positively associated with the CV of TP (Table S2).

3.2. Long-term trends in spatial abiotic and biotic heterogeneity

For shallow lakes,we found significant temporal increases in climate
heterogeneity and the CV of wind speed and decreases in total beta
riables, multivariate climate heterogeneity (Euclidean dissimilarity coefficients of climate
H, silicate, Secchi depth, suspended solids and alkalinity) and three beta diversitymeasures
versity due to spatial turnover) and nestedness coefficient (beta diversity due to spatial
e (Var.exp.) and significance (P-value) of seasonal trends (1989–2008) are also given, with

Deep lakes

P-value Mean Range Var.exp P-value

0.359 0.08 0.08–5.12 0.028 0.342
<0.001 0.1 0.01–0.6 0.195 <0.001
0.058 0.54 0.06–2.52 0.025 0.061

<0.001 0.2 0.03–0.61 0.123 <0.001
<0.001 0.49 0.14–1.06 0.069 <0.001

<0.001 0.13 0.02–1.33 0.348 <0.001
0.802 1.65 0.49–2.8 0.061 0.001

<0.001 0.97 0.02–1.76 0.073 0.002
<0.001 0.6 0.04–1.01 0.076 0.002
0.037 1.32 0.22–2.48 0.053 0.018

<0.001 0.05 0–0.1 0.123 <0.001
<0.001 1.02 0–2.16 0.177 <0.001
<0.001 0.55 0.05–0.99 0.06 0.003
0.001 1.21 0.11–2.27 0.314 <0.001
0.194 0.28 0.05–0.72 0.108 <0.001

<0.001 1.99 0.81–3.92 0.018 0.333

<0.001 0.82 0.33–1 0.101 <0.001
<0.001 0.76 0.33–1 0.076 <0.001
<0.001 0.06 0–0.2 0.001 0.479



Fig. 1. Seasonal trends (1989–2008) in the coefficient variations (CV) ofwater temperature, Schmidt stability, total phosphorus (TP), total nitrogen (TN), climatic heterogeneity (Euclidean
dissimilarity coefficients of climatic variables), environmental heterogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, pH, silicate, Secchi depth, suspended solids and alkalin-
ity) and the threemultiple-site beta diversity measures: Sørensen dissimilarity (i.e. total beta diversity), Simpson dissimilarity (beta diversity due to spatial turnover) and nestedness dis-
similarity (beta diversity due to spatial nestedness-resultant richness differences) between shallow (blue) anddeep (red) lakes. (For interpretation of the references to colour in thisfigure
legend, the reader is referred to the web version of this article.)

Table 2
Linear fit slopes of the linear models for the relationship between the investigated vari-
ables and time. Significant slopes are highlighted in bold. Variables are de-seasonalised re-
siduals of the coefficient of variations of climatic and local abiotic variables, climate
heterogeneity (Euclidean dissimilarity coefficients of climatic variables), environmental
heterogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, pH, silicate, Secchi
depth, suspended solids and alkalinity) and the three multiple-site beta diversity mea-
sures: Sørensen coefficient (i.e. total beta diversity), Simpson coefficient (beta diversity
due to spatial turnover) and nestedness coefficient (beta diversity due to spatial
nestedness-resultant richness differences) between shallow and deep lakes.

Parameters Shallow lakes Deep lakes

Slope P-value R2.adjusted Slope P-value R2.adjusted

Climatic variables
Air temperature −0.003 0.321 0.000 −0.004 0.140 0.003
Solar irradiance 0.001 0.158 0.003 0.000 0.651 −0.002
Precipitation −0.003 0.267 0.001 −0.003 0.416 −0.001
Wind speed 0.004 <0.001 0.186 0.003 <0.001 0.038
Climatic
heterogeneity

0.005 0.001 0.030 0.004 0.010 0.016

Local abiotic variables
Water
temperature

−0.002 0.021 0.012 −0.002 0.065 0.007

Schmidt stability −0.035 <0.001 0.088 −0.003 0.316 0.000
Total phosphorus −0.027 <0.001 0.299 −0.016 <0.001 0.101
Total nitrogen −0.001 0.681 −0.002 −0.007 <0.001 0.108
Chlorophyll-a −0.012 <0.001 0.061 −0.029 <0.001 0.109
pH −0.003 <0.001 0.101 −0.002 <0.001 0.242
Silicate −0.013 <0.001 0.146 −0.002 0.053 0.008
Secchi depth −0.003 0.039 0.009 −0.032 <0.001 0.125
Suspended
solids

−0.017 <0.001 0.117 −0.020 <0.001 0.123

Alkalinity 0.003 0.037 0.009 0.000 0.687 −0.002
Environmental
heterogeneity

−0.010 <0.001 0.038 −0.022 <0.001 0.057

Spatial beta diversity and its component
Total beta
diversity

−0.002 <0.001 0.141 −0.005 <0.001 0.309

Spatial turnover −0.003 <0.001 0.066 −0.006 <0.001 0.247
Spatial
nestedness

0.000 0.665 −0.002 0.001 0.003 0.021
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diversity, spatial turnover, environmental heterogeneity, the CV of
water temperature, Schmidt stability, TP, Chl-a, pH, Secchi depth, SI
and SS (Table 2, Figs. 2, S4 & S5).

For deep lakes, we found significant temporal increases in climatic
heterogeneity, spatial nestedness and the CV of wind speed and de-
creases in total beta diversity, spatial turnover, environmental hetero-
geneity, the CV of water temperature, TP, TN, Chl-a, pH, Secchi depth
and SS (Table 2, Figs. 3, S4 & S5).

Among all the tested climatic and local abiotic variables (Table 3),
total beta diversity of phytoplankton was mainly determined by the CV
of water temperature, Schmidt stability, TP, pH and TA (negative) across
shallow lakes and by the CV of TP, TN, Chla and SI across deep lakes. Spa-
tial turnover was mostly determined by the CV of Schmidt stability, TP
and pH across shallow lakes and by the CV of TP, TN, SI and Secchi
depth across deep lakes. Spatial nestedness was mainly determined by
the CV of wind speed (negative), TP (negative), Chla, pH (negative) and
TA (negative) across shallow lakes and by the CV of air temperature,
wind speed, TP (negative) and Secchi depth across deep lakes.

For both shallow and deep lakes, total beta diversity as well as its
turnover component was positively associated with the CV of TP, TN,
Schmidt stability and environmental heterogeneity, while spatial
nestedness was negatively associated with the CV of TP and environ-
mental heterogeneity (Figs. S6, S7). Spatial nestedness was negatively
related to the CV of wind speed for shallow lakes and positively related
to the CV of air temperature andwind speed, but no clear relationswith
climatic heterogeneity appeared (Fig. S8).

3.3. Multivariate relationships between spatial heterogeneity of climates,
local abiotic variables and phytoplankton communities

To explore the multivariate cascading relationships between the CV
of four climatic variables (i.e., AT, SI, WS, precipitation), environmental
heterogeneity, the CV of water temperature, Schmidt stability, TP, TN
and phytoplankton beta diversity (total beta diversity, spatial turnover,
spatial nestedness), the stepwise AICc model selection process yielded
final path models for each of the three dissimilarity coefficients
(Fig. 4). For shallow lakes, the accepted models explained 25% of the



Fig. 2. Long-term trends (shallow lakes, 1989–2008) in de-seasonalised residuals (residuals from GAM models extracting seasonal trends for each variable) of the coefficient variations
(CV) of water temperature, Schmidt stability, total phosphorus (TP), total nitrogen (TN), climatic heterogeneity (Euclidean dissimilarity coefficients of climatic variables), environmental
heterogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, pH, silicate, Secchi depth, suspended solids and alkalinity) and the three multiple-site beta diversity measures:
Sørensen coefficient (total beta diversity), Simpson coefficient (beta diversity due to spatial turnover) and nestedness coefficient (beta diversity due to spatial nestedness-resultant rich-
ness differences). Regression lines are drawn in red. Solid line indicates significant relationships and dashed line indicates non-significant relationships. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.)

6 H. Fu et al. / Science of the Total Environment 748 (2020) 141106
variation (R2) of total beta diversity (χ2 = 25.2, d.f.= 32, P= .8, AIC=
93.2), 22% of spatial turnover (χ2 = 23.9, d.f.=30, P= .78, AIC= 93.9)
and 10% of spatial nestedness (χ2= 25.6, d.f.=32, P= .78, AIC=93.6).
The CV of SI and precipitation were not retained in the final model for
shallow lakes. The CV of AT showed negative effects on the CV of
water temperature (R2=0.04) and positive effects on theCV of Schmidt
stability (R2 = 0.03). The CV of TP (R2 = 0.11) was negatively affected
by the CV of AT and WS and positively affected by the CV of Schmidt
Fig. 3. Long-term trends (deep lakes, 1989–2008) in de-seasonalised residuals (residuals fromG
of water temperature, Schmidt stability, total phosphorus (TP), total nitrogen (TN), climatic he
erogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, pH, silicate, Secchi depth, susp
coefficient (total beta diversity), Simpson coefficient (beta diversity due to spatial turnover) an
ences). Regression lines are drawn in red. Solid line indicates significant relationships and dashe
in this figure legend, the reader is referred to the web version of this article.)
stability, while the CV of TN (R2 = 0.01) was marginally affected by
the CV of Schmidt stability. The CV of TP was significantly positively as-
sociated with the CV of TN. The CV of TP (31–32%) and Schmidt stability
(34–37%) were the strongest predictors (Tables S3 and S4), promoting
total beta diversity and its turnover component, either directly or indi-
rectly via enhancing the environmental heterogeneity (15–16%) of the
lakes (Tables S3 and S4). However, the CV of TP (30%) and environmen-
tal heterogeneity (28%), followed by the CV of WS (18%) and Schmidt
AMmodels extractomg seasonal trends for each variable) of the coefficient variations (CV)
terogeneity (Euclidean dissimilarity coefficients of climatic variables), environmental het-
ended solids and alkalinity) and the three multiple-site beta diversity measures: Sørensen
d nestedness coefficient (beta diversity due to spatial nestedness-resultant richness differ-
d line indicates non-significant relationships. (For interpretation of the references to colour



Table 3
Relative importance (RI) of explanatory variables for all model compilations and standardised coefficients (beta) obtained from model averaging over all combinations of model terms.
Models were calculated for the three multiple-site beta diversity measures: Sørensen coefficient (i.e. total beta diversity), Simpson coefficient (beta diversity due to spatial turnover)
and nestedness coefficient (beta diversity due to spatial nestedness-resultant richness differences), respectively. All variables are de-seasonalised residuals (residuals from GAMmodels
extracting seasonal trends for each variable). For RI, 1.00 indicates that this particular variable is selected in all models, whereas 0 means that the variable is not selected in any of the
models. Beta indicates the directions between the beta diversity coefficient and the environmental variable. If a given variable (not shown in the table) was not included in the most im-
portant beta diversity models (AICc <2.0), the direction of influencewas obtained from a fullmodel including all the variable candidates. Themost important predictors of eachmetric are
given in bold, and the marginally important predictors of each metric are shown in italics. * P < .05; ** P < .01; *** P < .001.

Variables Total beta diversity Spatial turnover Spatial nestedness

Shallow lakes Deep lakes Shallow lakes Deep lakes Shallow lakes Deep lakes

beta RI beta RI beta RI beta RI beta RI beta RI

Climate variables
Air temperature 0.000 0.53 0.06 0.17 0.000 0.08 0.000 0.09 0.01 1.00
Solar irradiance 0.000 0.03 0.028 0.34 0.001 0.08 0.037 0.21 −0.004 0.20
Precipitation 0.000 0.03 0.000 0.04 0.000 0.07 0.000 0.11
Wind speed −0.08 0.40 0.045 0.67 −0.11 0.66 −0.05 1.00 0.03 0.85

Local abiotic variables
Water temperature 0.008 0.80 −0.004 0.003 0.19 0.000 0.07 0.000 0.09
Schmidt stability 0.01 1.00 0.04 0.01 1.00 0.000 0.08 0.000 0.09
Total phosphorus 0.01 1.00 0.05 1.00 0.02 1.00 0.07 1.00 −0.01 1.00 −0.03 1.00
Total nitrogen 0.04 1.00 0.04 0.81
Chlorophyll-a 0.001 0.09 0.02 1.00 −0.001 0.19 0.003 0.25 0.01 1.00 0.005 0.75
pH 0.50 1.00 0.221 0.70 0.70 1.00 0.259 0.70 −0.20 1.00
Silicate 0.007 0.71 0.02 1.00 0.001 0.09 0.02 1.00 0.001 0.20 −0.034 0.10
Secchi depth −0.002 0.33 0.011 0.21 0.06 1.00 0.000 0.09 0.00 1.00
Suspended solids 0.007 0.70 0.11 0.000 0.09 0.000 0.14
Alkalinity −0.04 1.00 −0.002 0.05 0.07 −0.04 1.00

Fig. 4. Generalized multilevel path models showing the cascading effects of climate and restoration on the coefficient of variations of water temperature and Schmidt stability, TP, TN,
environmental heterogeneity (Euclidean dissimilarity coefficients of chlorophyll-a, pH, silicate, Secchi depth, suspended solids and alkalinity) and the three multiple-site beta diversity
measures: Sørensen coefficient (i.e. total beta diversity), Simpson coefficient (beta diversity due to spatial turnover) and nestedness coefficient (beta diversity due to spatial
nestedness-resultant richness differences) between shallow (a) and deep (b) lakes. All variables are de-seasonalised residuals of their original values. Arrows represent the flow of cau-
sality among variables. Bidirectional arrows between TP and TNwere included as they are highly coupledwith no hypothesised casual direction. Path coefficients (i.e., numbers associated
with each arrow) are standardised partial regression coefficients. Arrow width is proportional to the standardised path coefficients and can be interpreted as the relative importance of
each factor. Black arrows represent positive linear relationships, red arrows represent negative linear relationships, and dashed arrows represent marginal relationships (P < 0.1). The
statistical significance for linear relationships was tested using likelihood-ratio tests. *: P < 0.05; **: P < 0.01; ***: P < 0.001; δ: P < 0.1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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stability (12%), strongly decreased thepartial nestedness of phytoplank-
ton (Table S5).

For deep lakes, the accepted models explained 15% of the variation
(R2) of total beta diversity (χ2 = 23.5, d.f. = 36, P = .95, AIC = 87.5),
15% of spatial turnover (χ2 = 20.6, d.f. = 32, P = .94, AIC = 88.7) and
8% of spatial nestedness (χ2 = 20.7, d.f. = 32, P = .94, AIC = 88.7).
The CV of WS, SI and precipitation were not retained in the final
model for deep lakes (Fig. 4). The CV of AT showed positive effects on
the CV of Schmidt stability (R2 = 0.03), TP and TN. The CV of WT had
positive effects on the CV of Schmidt stability, which had positive effects
on the CV of TP. The CV of TP was marginally associated with the CV of
TN. The CV of TP (52–72%)was the strongest predictor directly promot-
ing total beta diversity and spatial turnover and decreasing the spatial
nestedness of phytoplankton (Table S6). The CV of TN (14–24%) was
the second most important driver directly promoting the total beta di-
versity and spatial turnover of phytoplankton (Table S6). The CV of AT
(11–13%) was the third most important driver, mainly through indirect
cascading effects on phytoplankton community beta diversity via the CV
of TP and TN (Table S6). The CV of Schmidt stability and WT had weak
positive effects on total beta diversity and spatial turnover and negative
effects on the spatial nestedness of phytoplankton (Table S6).

4. Discussion

We used a long-term semi-monthly dataset on environmental vari-
ables and phytoplankton community composition in 20 Danish lakes to
investigate seasonal and annual trends in the spatial heterogeneity of
environmental variables and phytoplankton composition. We observed
1) significant seasonality in the spatial heterogeneity of most environ-
mental variables and in the spatial beta diversity of phytoplankton com-
munities, 2) significant long-term temporal decreases in the spatial
environmental heterogeneity aswell as the spatial beta diversity of phy-
toplankton communities and, additionally, 3) that the spatial homoge-
nisation of phytoplankton could largely be attributed to the spatial
heterogeneity of TP and Schmidt stability in shallow lakes and the de-
crease in spatial TP and TN heterogeneity in deep lakes. Nonetheless,
the spatial heterogeneity of the phytoplankton communitywas affected
indirectly by climatic warming in both shallow and deep lakes and di-
rectly by wind speed in shallow lakes, albeit only weakly so.

4.1. Significant seasonality in spatial abiotic and biotic heterogeneity

In both shallow and deep lakes, the lowest spatial heterogeneitywas
observed for climate and water temperature during summer, while
higher spatial heterogeneity was observed during early spring and late
autumn. This may reflect the facts that the lake water column is rela-
tively undisturbed andwatermixing is at its lowest in Danish lakes dur-
ing the summer. This is due to the usually calmer winds and higher air
temperatures, leading to strongly synchronous responses of surface
water temperature among lakes irrespective of depth, area and water
column stability (Jeppesen et al., 2013; Özkan et al., 2016).

The spatial heterogeneity of TP peaked during summer in both type
of lakes, but most pronounced in shallow lakes, likely reflectingmarked
variations in internal phosphorus loading and consequent phosphorus
release between lakes in summer (Søndergaard et al., 2003;
Søndergaard et al., 2013). In contrast, the spatial heterogeneity of TN
showed a decrease during summer, especially for shallow lakes, which
may be due to a common decrease in N loading and an increase in the
loss of nitrate by denitrification due to the higher temperatures
(Dolman et al., 2016), particularly in shallow lakes with good contact
betweenwater and sediment, leading to low inorganic nitrogen concen-
trations in summer (Søndergaard et al., 2017). Higher summer temper-
atures could also promote weak stratification, which may increase
denitrification and the loss of N (Dolman et al., 2016). The less pro-
nounced patterns in the heterogeneity of TP, TN and other environmen-
tal variables in the epilimnion of the deep lakes may, in part, be due to
thermal stratification that prevents a close coupling between sediment
and surface water (Søndergaard et al., 2017). Furthermore, the more
pronounced environmental heterogeneity in shallow lakes than in
deep lakesmay also be due to a large variation in the abundance ofmac-
rophytes in summer in shallow lakes (Lauridsen et al., 2003).

The total beta diversity (i.e., Sørensen coefficient) and spatial turn-
over (i.e., Simpson coefficient) of phytoplankton communities in both
shallow and deep lakes showed a significant peak in summer. This cor-
relates well with the observed summer peaks in the heterogeneity of TP
and other environmental variables, likely reflecting strong environmen-
tal control over the seasonal beta diversity of phytoplankton (Özkan
et al., 2016). Amajor change in the composition of the dominant phyto-
plankton during summer (Reynolds et al., 2002; Jeppesen et al., 2005,
Özkan et al., 2016), such as diatom and/or dinophyte dominance in me-
sotrophic lakes and cyanobacteria and/or chlorophyte dominance in eu-
trophic lakes, and a lower variability in the phytoplankton community
during other seasons, such as diatom dominance in most lakes during
spring, might have contributed to the greater spatial turnover during
summer (Anneville et al., 2004; Litchman and Klausmeier, 2008;
Schwaderer et al., 2011). Spatial nestedness, however, exhibited a re-
verse pattern and had the lowest values in summer for shallow lakes,
while no significant pattern emerged in the deep lakes. This suggests
that spatial turnover dominates the seasonal changes in spatial hetero-
geneity (i.e., total beta diversity) of phytoplankton communities.

4.2. Relative importance of climatic and local abiotic drivers in determining
long-term trends in the spatial heterogeneity of phytoplankton

We observed a significant long-term increase in the spatial hetero-
geneity of wind speed as well as climate heterogeneity, with potential
consequences for the temporal variations of water temperature and
Schmidt stability in lake waters, as shown by path models (Fig. 4). In
shallow lakes, however, both the spatial heterogeneity of air tempera-
ture and wind speed had negative and indirect effects on total beta di-
versity and spatial turnover, mainly mediated by spatial TP
heterogeneity and, next, the spatial heterogeneity of water temperature
and Schmidt stability. The climatic warming associated with the North
Atlantic Oscillation (NAO) has important effects on surface water tem-
perature and mixing processes, leading to a strong temporal increase
in Schmidt stability and a firmer vertical spatial structure of the lakes
when NAO is high (George et al., 2004; Flaim et al., 2016). Furthermore,
the increased spatial heterogeneity ofwind speed in shallow lakes led to
decreased spatial nestedness of the phytoplankton communities, sug-
gesting that regional climatic heterogeneity could have direct influences
on the spatial patterns of phytoplankton communities. This result is
supported by previous findings that the temporal variability of wind
speed had marked effects on water nutrients and thus phytoplankton
communities in shallow lakes (Deng et al., 2018; Rusak et al., 2018;
Zhang et al., 2018). By contrast, for deep lakes, air temperature was
the only climatic driver retained in the final path model, having signifi-
cant indirect effects (11–13%) on the total beta diversity, spatial turn-
over (positive) and spatial nestedness (negative) of the phytoplankton
communities. Although the overall contribution of climatic heterogene-
ity to the total beta diversity and spatial turnover of phytoplankton
communitieswas relatively lower in the shallow lakes (7–8% of air tem-
perature andwind speed) than in the deep lakes (12–13% of air temper-
ature), our results provide evidence that climatic drivers had cascading
effects on phytoplankton community composition in both shallow and
deep lakes.

The temporal trends in spatial TP and TN heterogeneity were partly
explained (usually less than 11%, though) by the spatial heterogeneity
of air temperature, wind speed and Schmidt stability in shallow lakes
and by the spatial heterogeneity of air temperature and Schmidt stabil-
ity in deep lakes. The observed potential cascading effects of climatic
heterogeneity on spatial TP and TN heterogeneity should be interpreted
with caution as the temporal trends in climatic variables were much
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more uniform across lakes, and their effects on TP and TN remained un-
certain. The high unexplained variation could reflect the different mag-
nitude of external nutrient loading reductions, which is strongly
influenced by the original nutrient concentration of the lake as well as
the fact that the reduction efforts were most comprehensive for the
most eutrophic lakes. The highly eutrophic lakes experienced strong de-
creases in TP and TN concentrations, while weak or even no changes
were recorded for most moderately trophic and mesotrophic lakes
(Özkan et al., 2016). This will eventually lead to decreases in the data
dispersion around the mean and thus in the spatial heterogeneity of
TP and TN across lakes.

According to the path analysis, the decreased spatial TP heterogene-
ity in both shallow and deep lakes was the most important factor caus-
ing spatial homogenisation of phytoplankton communities, either
directly or indirectly through a reduction of the spatial environmental
heterogeneity. In addition, decreased spatial TN heterogeneity in deep
lakes remained the secondmost important factor resulting in spatial ho-
mogenisation of phytoplankton communities. This positive association
between the spatial heterogeneity of environments and the biotic com-
munity has also been reported for other organisms in both terrestrial
(Gianuca et al., 2017; Liu et al., 2018; Uriarte et al., 2018) and aquatic
ecosystems (Menezes et al., 2015; Alahuhta et al., 2017; Cook et al.,
2018; Salgado et al., 2018). In our study, the key environmental vari-
ables in nutrient-rich lakes tended to become more similar to those in
less nutrient-rich lakes following an external nutrient loading reduction
(Özkan et al., 2016). That is, the lower spatial heterogeneity of TP and
the lower spatial environmental heterogeneity both had subsequent ef-
fects on phytoplankton community structure. Previous results have in-
dicated that the phytoplankton community in most hypertrophic lakes
undergoing strong decreases in external nutrient loading shows in-
creased local heterogeneity, thereby resembling the phytoplankton
communities of meso-oligotrophic lakes (Özkan et al., 2016); however,
at the same time the similarity of phytoplankton communities among
lakes increased and spatial heterogeneity decreased (Anneville et al.,
2004; Anneville et al., 2005). This implies that the human measures in-
troduced to reduce the external nutrient loading might markedly in-
crease the local heterogeneity of hypertrophic but not necessarily of
oligotrophic lakes, creating regional homogenisation of phytoplankton
communities. Furthermore, the decrease in the spatial heterogeneity
of phytoplankton communities was largely due to significant decreases
in spatial turnover and increases in spatial nestedness. The markedly
more narrow nutrient gradients after restoration in the lakes may
have resulted in the loss of hyper-eutrophic phytoplankton communi-
ties (Anneville et al., 2005), which may explain the temporally dimin-
ished importance of the spatial turnover component observed in our
study.With restoration, however, the species richness of phytoplankton
increases in the most hypertrophic lakes in the direction of moremeso-
trophic taxa (Anneville et al., 2005; Jeppesen et al., 2005; Özkan et al.,
2014), which may explain the increase in importance of spatial
nestedness. Notably, the relative contribution of spatial TP heterogene-
ity to phytoplankton beta diversity was much lower in shallow
(32–34%) than in deep lakes (72–76%). This is largely attributed to the
circumstance that most variations of spatial heterogeneity of phyto-
plankton in shallow lakeswere accounted for by the spatial heterogene-
ity of Schmidt stability.

Decreased spatial heterogeneity of Schmidt stability was the most
important driver in decreasing the total beta diversity and its turnover
components of the phytoplankton community across shallow lakes,
either directly or indirectly via changes in spatial TP heterogeneity. Pre-
vious studies have indicated a temporally coincident variation between
phytoplankton community dynamics and thermal stratification
(Winder and Schindler, 2004) and the timing of ice break up
(Weyhenmeyer et al., 1999; Adrian et al., 2006). These lake physical
processes are coincident with variations in climatic indicators, such as
the North Atlantic Oscillation (Weyhenmeyer et al., 1999; George
et al., 2004). Furthermore, the climate changes could interact with
restoration by influencing the thermal stratification and water physical
processes (Flaim et al., 2016), which have been considered as drivers of
long-term changes in the abundance and composition of planktonic
communities (Anneville et al., 2005; Thackeray et al., 2008). This may
explain the mediating effects of Schmidt stability on phytoplankton
community composition observed at regional scale. In deep lakes, how-
ever, we found no significant temporal trends in the spatial heterogene-
ity of Schmidt stability and only weak indirect effects on phytoplankton
community composition, which further suggests that the water mixing
processes and their climate-mediating effects under the environmental
conditions considered here are unlikely to influence the spatial patterns
of phytoplankton when water depth increases.

It has been widely recognised that temporal variations in local phy-
toplankton community composition are the result of both changes in
nutrient loading and in climate (Anneville et al., 2004; Anneville et al.,
2005; Jeppesen et al., 2005; Pomati et al., 2012; Flaim et al., 2016).
Our results provide further evidence of the fact that both climatic and
local abiotic drivers contributed to the spatial patterns of phytoplankton
communities at landscape scale, either seasonally (not including win-
ter) or in the long term. The potential cascading effects of climate het-
erogeneity (i.e., air temperature and wind speed) on the spatial
heterogeneity of phytoplankton communities were, as expected, con-
trolled by the change in water temperature and mixing patterns, albeit
the magnitude and direction depended on the water depth. However,
the temporal dynamics of the phytoplankton communities responded
more strongly to local abiotic drivers (i.e., TP and Schmidt stability in
shallow lakes, TP and TN in deep lakes). Local management measures
taken to reduce external nutrient loading have led to synchronous de-
clines in TP and TN as well as synchrony of the temporal changes in
local abiotic drivers and phytoplankton communities (Anneville et al.,
2004; Anneville et al., 2005; Özkan et al., 2014, 2016). Actually, these
measures have only led to strong decreases in the external nutrient
loading only for one third of 20 studied lakes, indicating the temporal
trends in spatial heterogeneity of biotic and abiotic variables are mainly
dominated by the restoration of hypereutrophic lakes (Özkan et al.,
2016). This could greatly increase local biotic heterogeneity especially
in hypertrophic lakes towards communities ofmeso-oligotrophic status
and eventually decrease the biotic dissimilarity among lakes and thus
biotic homogenisation at regional scale. Furthermore, the phytoplank-
ton communities tended to be spatially homogenised across lakes to-
wards relatively low nutrient loadings at both seasonal (i.e., spring
and autumn) and long-term scale (i.e., meso-oligotrophic status after
a period of restoration). We, therefore, conclude that restoration of eu-
trophic lakes may lead to an increase in the local heterogeneity of phy-
toplankton communities at lake scale and to an increase in homogeneity
at landscape scale.
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