
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Articles

The specificity of marine ecological indicators to fishing in the face of
environmental change: A multi-model evaluation

Yunne-Jai Shina,b,c,⁎, Jennifer E. Houled, Ekin Akoglue,f, Julia L. Blanchardg, Alida Bundyh,
Marta Colla,b,i, Hervé Demarcqa,b, Caihong Fuj, Elizabeth A. Fultonk,l, Johanna J. Heymansm,n,
Baris Salihogluf, Lynne Shannonc, Miriana Sporcick, Laure Veleza,b

aUMR 248 MARBEC, Université de Montpellier-CNRS-IFREMER-IRD, Place Eugène Bataillon, CC093, 34095 Montpellier, France
b Institut de Recherche pour le Dévelopement (IRD), Centre de Sète, Avenue Jean Monnet, CS30171, 34203 Sète, France
cMarine Research (MA-RE) Institute and Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
d Institute of Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
e Institute of Marine Sciences, METU, Erdemli MERSİN, Turkey
fOGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/C, 34010 Sgonico, TS, Italy
g Centre for Marine Socioecology and Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001, Australia
h Fisheries and Oceans Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS B2Y 4A2, Canada
i Institute of Marine Science (ICM-CSIC) & Ecopath International Initiative Research Association, Passeig Marítim de la Barceloneta, n° 37-49, 08003 Barcelona, Spain
j Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
k CSIRO Oceans & Atmosphere Flagship, Castray Esplanade, Hobart, Tasmania 7001, Australia
l Centre Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
m Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK
n European Marine Board, VLIZ, Wandelaarkaai 7, 8400 Oostende, Belgium

A R T I C L E I N F O

Keywords:
Ecosystem approach to fisheries
Indicator performance
Marine ecosystem models
Scenarios
Multi-model evaluation
Signal-to-noise ratio

A B S T R A C T

Ecological indicators are widely used to characterise ecosystem health. In the marine environment, indicators
have been developed to assess the ecosystem effects of fishing to support an ecosystem approach to fisheries.
However, very little work on the performance and robustness of ecological indicators has been carried out. An
important aspect of robustness is that indicators should respond specifically to changes in the pressures they are
designed to detect (e.g. fishing) rather than changes in other drivers (e.g. environment). We adopted a multi-
model approach to compare and test the specificity of commonly used ecological indicators to capture fishing
effects in the presence of environmental change and under different fishing strategies. We tested specificity in the
presence of two types of environmental change: “random”, representing interannual climate variability and
“directional”, representing climate change. We used phytoplankton biomass as a proxy of the environmental
conditions, as this driver was comparable across all ecosystem models, then applied a signal-to-noise ratio
analysis to test the specificity of indicators with random environmental change. For directional change, we used
mean gradients to apportion the quantity of change in the indicators due to fishing and the environment. We
found that depending on the fishing strategy and environmental change, ecological indicators could range from
high to low specificity to fishing. As expected, the specificity of indicators to fishing almost always decreased as
environmental variability increased. In 55–76% of the scenarios run with directional change in phytoplankton
biomass across fishing strategies and ecosystem models, indicators were significantly more responsive to changes
in fishing than to changes in phytoplankton biomass. This important result makes the tested ecological indicators
good candidates to support fisheries management in a changing environment. Among the indicators, the catch
over biomass ratio was most often the most specific indicator to fishing, whereas mean length was most often the
most sensitive to change in phytoplankton biomass. However, the responses of indicators were highly variable
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depending on the ecosystem and fishing strategy under consideration. We therefore recommend that indicators
should be tested in the particular ecosystem before they are used for monitoring and management purposes.

1. Introduction

Indicators help policymakers make effective decisions by providing
information about potential impacts of policy on an ecosystem. For
example, ecological indicators are used to support biodiversity assess-
ment for the UN Convention on Biological Diversity (Nicholson et al.,
2012) and to characterise the health of exploited marine ecosystems in
support of an ecosystem approach to fisheries (EAF; Garcia et al., 2003),
as mandated by policies such as the EU Marine Strategy Framework
Directive (Greenstreet et al., 2012, Probst et al., 2013, Piet and Hintzen,
2012). Given a policy or management objective, the selection of ap-
propriate indicators is a complicated process whereby indicators must
satisfy a number of criteria. These include well-accepted underlying
ecological theory linking indicators to their policy objectives, their
measurability, and public awareness (Rice and Rochet, 2005; Mace and
Baillie, 2007; Borja and Dauer, 2008; Shin et al., 2010). Additionally, to
be useful for decision-making, indicators should respond predictably
with respect to a given pressure, otherwise they can be misinterpreted.
In the context of EAF, it is essential for decision-makers that the re-
sponse of indicators to changing fishing pressure is well characterised,
because modifying fishing pressure (effort, gear type, mesh size, etc.) is
one of the primary management “levers” of fisheries (Garcia et al.,
2003). The performance of indicators can be quantified based on dif-
ferent facets, e.g. the rate and speed of response to change in fishing
pressure, or the specificity of response to fishing among other drivers of
change, and performance should, ideally, be tested before indicators are
put into management practice in a particular ecosystem.

It is assumed that indicators in support of EAF respond to fishing in
a predictable way and that they reflect the impact of fishing on eco-
system properties. As the evidence cannot be easily provided by em-
pirical analyses, the few studies that quantified the response and per-
formance of indicators to fishing have almost exclusively been based on
a model-based simulations framework (Fulton et al., 2005; Travers
et al., 2006; Houle et al., 2012; Fay et al., 2013; Lehuta et al., 2013). In
addition, the performance of indicators has only been addressed in a
purely fisheries context, while ignoring the environment at large. But as
shown empirically, ecological indicators that were selected for re-
flecting ecosystem changes due to fishing also respond to other stressors
such as environmental change (Blanchard et al., 2005; Link et al., 2010;
Large et al., 2013; Fu et al., 2015). Therefore, it is important to fill the

gap and test how specific the response of indicators is with regard to
fishing in the face of environmental variability and change.

Indicators of ecosystem health status are generally assumed to have
a negative response to fishing (Shin et al., 2010), but fishing history and
the pattern of fishing affect indicator response and its robustness
(Branch et al., 2010; Shannon et al., 2014; Coll et al., 2016). An in-
dicator may have been developed to capture a specific fishing phe-
nomenon which can be observed under certain conditions (e.g. to what
extent decreasing trophic level of the catch reflects the “fishing down
marine foodwebs” phenomenon; Pauly et al., 1998), but it may respond
differently in other contexts, or under specific fishing strategies, such as
a balanced fishing across trophic levels (Garcia et al., 2012). In addi-
tion, ecosystem features such as depth and latitude also influence in-
dicator behaviour (Heymans et al., 2014). The response of indicators
should therefore be tested and characterized under different fishing
strategies in a variety of ecosystems, which feature different dominant
processes and structures.

We tested the specificity of a set of indicators, i.e. the degree to
which indicators respond to changes in fishing pressure compared to
changes in primary production, chosen as one of the other key drivers
that could impact fish dynamics. We adopted a comparative multi-
modelling approach to explore the differential response of indicators to
fishing, based on differences of fishing strategy and ecosystem features.
Many uncertainties exist due to differences in ecosystems, but also due
to the assumptions and structure of ecosystem models. We address this
by covering a wide range of ecosystems and by using four different
types of ecosystem models (Ecopath with Ecosim, Atlantis, Osmose,
multi-species size-spectrum) with different underlying conceptual and
structural premises (see supplementary material of Tittensor et al.
(2017) and Reed et al. (2017) for a comparison of the models).

2. Materials and methods

2.1. Ecological indicators

We computed a suite of ecological indicators – a subset of the
IndiSeas indicators (Shin et al., 2010; Coll et al., 2016) – that could be
calculated from the output of the ecosystem models used in this study.
All indicators were conceptually defined so that they are expected to
decline with increasing fishing pressure. The following indicators were

Table 1
Summary of indicators calculated from model results.

Indicator Definition* Species included† References

Mean length‡ ∑i Li
N

(cm)
All pelagic and demersal surveyed species Shin et al. (2005)

Mean trophic level¶ (community) ∑

∑
s TLsBs

s Bs

All pelagic and demersal surveyed species Cury et al. (2005), Pauly et al. (1998)

Proportion of predatory fish B (predatory fish)/B (surveyed) All pelagic and demersal surveyed species Shin et al. (2010)
Mean lifespan ∑

∑
s sBs

s Bs

agemax, (years)
All pelagic and demersal surveyed species Shin et al. (2010)

Biomass/landings B/Y All retained species Shin et al. (2010)
Mean intrinsic vulnerability§ ∑

∑
s IVIsYs

s Ys

All retained species Cheung et al. (2007); Coll et al. (2016)

Marine trophic index¶ ∑

∑
s TLsYs

s Ys
, including only species with TL>3.25

All retained species Pauly and Watson (2005)

* L, length (cm); i, individual; s, species; N, abundance; B, biomass (tons); Y, catch (tons); TL, trophic level; agemax, maximum age (years); IVI, intrinsic vulnerability index.
† Definitions of pelagic, demersal, surveyed, and retained species are adopted from Shin et al. (2010); see summary in Appendix A in Supporting Information.
‡ Mean length indicator may be calculated from all models except EwE.
¶ A variable trophic level may be calculated by models, but here, to match empirical data, we use a fixed trophic level TLs for each modelled species s.
§ Intrinsic vulnerability scores only available for fish, not invertebrates, so only fish are included in this indicator.
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considered (Table 1): mean length, mean trophic level (TL) of the
community, proportion of predatory fish, mean lifespan, biomass/
landings ratio, mean intrinsic vulnerability, and marine trophic index.
In order to place our simulation experiments and subsequent analyses
in the same conditions as the in situ collection of empirical data, only
those species in the model that are actually surveyed in each ecosystem
were used to calculate the community-based indicators (mean length,
mean TL of the community, proportion of predatory fish, mean life-
span). Only those species in the model that are retained by fishing
vessels were used to calculate the exploitation-based indicators (mean
intrinsic vulnerability, marine trophic index). Both survey- and catch-
based output were used to calculate the biomass/landings ratio. We
acknowledge that restricting the indicators to a subset of species under-
utilises the potential of the models as data generators, but it is reflective
of the kinds of empirical information immediately available in the
different systems and thereby informative to local regulatory agencies.
In future analyses, there remains the opportunity to test the entire set of
models’ output to devise the minimum data/indicator requirements
across systems for universal observing programs and the like to fully
capture the ecosystem effects of fishing.

2.2. Ecosystem models

To capture the wide range of uncertainties across ecosystems and
different model structures, we used a multi-model ensemble that con-
sisted of four different ecosystem models applied to seven marine
ecosystems. Ecopath with Ecosim models (EwE; Christensen and
Walters, 2004, Christensen et al., 2008) were used for the Black Sea
(Akoglu, 2013), Southern Benguela (Shannon et al., 2004; Shannon
et al., 2008; Smith et al., 2011), Southern Catalan Sea (Coll et al., 2008;
Coll et al., 2013), and the Western Scotian Shelf/Bay of Fundy (Araujo
and Bundy, 2011, Araújo and Bundy, 2012). Each of these models was
previously fitted to time series of abundance and catch data, with the
exception of the Southern Catalan Sea model, which was fitted to
survey data only due to the poor quality of catch data in the Medi-
terranean Sea. We used the OSMOSE (Shin and Cury, 2001, 2004)
model for the West Coast Canada ecosystem, calibrated to time-aver-
aged biomass data (Fu et al., 2013). A size spectrum model, previously
calibrated to time-averaged landings and spawning stock biomass data,
was used for the North Sea (Blanchard et al., 2014). The Atlantis model
was used to represent the Southeastern Australia ecosystem, which had
been previously calibrated against historical survey and landing time
series data (Fulton et al., 2005; Fulton et al., 2014).

2.3. Representation of fishing pressure

Within each ecosystem, we tested three different fishing strategies: a
“low trophic level” (LTL) strategy, a “high trophic level” (HTL) strategy,
and an “all species” (ALL) strategy. In a given fishing strategy, we
distinguished two categories of retained species, i.e. the focus and the
non-focus species. The focus species have their fishing mortality gra-
dually increased, whereas the non-focus species undergo a constant
fishing mortality which corresponds to the current fishing situation.
The LTL strategy had a focus on LTL species: we made fishing mortality
vary for forage species only, while holding present-day fishing levels for
all other species that were retained in commercial or subsistence fish-
eries. Forage species were defined as pelagic species that feed mainly on
plankton (phyto-, zoo-, or ichthyoplankton) as adults. The HTL strategy
focused on predatory species that included large demersal and large
pelagic species (including the largest predatory fish, chondrichthyans
and large predatory invertebrates such as the giant squid) mainly
feeding on fish and macroinvertebrate species and that were retained in
commercial or subsistence fisheries. The ALL strategy represented
broad-scale exploitation, where fishing mortality varied for all species
that were retained in commercial or subsistence fisheries. Any pre-re-
cruit stages that were represented in some of the models were excluded

from the fishing scenarios, as well as any small invertebrates and (at the
other extreme) air-breathing animals (i.e. marine mammals, marine
turtles, and seabirds).

To make fishing strategies comparable across model systems, we
implemented them with a multiplier of the fishing mortality corre-
sponding to the maximum sustainable yield (FMSY) of the focus species.
This is to allow the evaluation of indicators across ecosystems, ac-
counting for fishing impacts on intrinsic biological properties and dy-
namics of the species, but avoiding indicators’ responses which would
be too dependent on the fishing history in the different ecosystems. We
prioritized the comparability of fishing pressure across ecosystems,
rather than contrasting more detailed ecosystem-specific fishing stra-
tegies and intensities. MSY is a reference level which is generic across
species and ecosystems, therefore implementing the fishing strategies
HTL/LTL/ALL in different ecosystems relative to this reference level
allows the evaluation of the specificity of indicators in a standardized
way. Thus, before running the fishing strategies, the single species FMSY

was estimated in each ecosystem, by reconstructing the yield to fishing
mortality curve for each species (catch as a function of fishing mortality
rate), while holding the model fishing mortality of all other retained
species constant at their respective current fishing mortality rates
(Fcurr). Then, the three fishing strategies (LTL, HTL, ALL) could be run,
with a focus species i being fished at Fi = λ FMSY,i (year−1) and a non-
focus species j being fished at its respective current fishing rate Fcurr, j.
For each fishing strategy, we tested the range of FMSY multipliers
λ={0.25, 0.5, 0.75, 1, 1.25, 1.5}, which covered a representative
range of the yield-fishing mortality curve. The focus species in the same
strategy were fished at the same proportion of their respective FMSY.
This multiplier approach allowed comparability across models and
ecosystems when plotting indicators’ responses, using the multiplier λ
as the common x-axis.

2.4. Representation of environmental change

Modelled phytoplankton biomass, which was comparable across
models and ecosystems, was used as a proxy for environmental change
since explicit physical drivers were not available for all ecosystem
models. In EwE and OSMOSE, we changed the input phytoplankton
biomass directly. For the size spectrum model, we changed the plankton
carrying capacity parameter because plankton biomass emerges from
the model and is not set directly. Explicit nutrient cycling in Atlantis
meant that direct forcing of phytoplankton was inappropriate.
Therefore, nutrient inputs from point sources and upwelling were
forced instead so that the resulting change in phytoplankton matched
the magnitude of change represented in the phytoplankton biomass
forcing used for the other model types.

To represent the effect of random environmental change on each
model ecosystem, we forced modelled phytoplankton biomass by a
random multiplier drawn from a lognormal distribution with a mean μ
of 1 and a range of standard deviations σ. We ran a set of 30 random
multipliers for each σ to adequately sample the random distribution. A
lognormal distribution was chosen because in marine ecosystems, the
distribution of biomass, including that of phytoplankton, across body
size is thought to be even on a logarithmic scale (Sheldon et al., 1972).
The standard deviations tested were consistent with observed variation
in the IndiSeas environmental dataset (www.indiseas.org). For each
ecosystem, we calculated the mean and standard deviation of the an-
nual satellite-derived Chlorophyll a from the MODIS Aqua spectral data
(Appendix B). In the data from 2003 to 2011, σ ranged from 0.01 to
0.69, with a mean of 0.21, so we took σ={0.1, 0.2, 0.3} as the values
tested. For Atlantis, nutrient forcing values were generated to approx-
imate the widths of a lognormal distribution in the resulting phyto-
plankton biomass.

We represented directional climate change in a simple and com-
parable way across all models, by applying a multiplier γ ∈ {0.85, 0.9,
0.95, 1, 1.05, 1.1} directly to modelled phytoplankton biomass, without
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randomness. This range of variability encompassed the range of
changes observed in the last decade in the ecosystems studied here
(Boyce et al., 2014).

2.5. Scenario testing

We tested a set of scenarios in each modelled ecosystem following a
multi-factorial simulation design: one simulation was run for each un-
ique combination of fishing strategy (HTL, LTL, ALL), fishing mortality
(varied using the FMSY multiplier), type of phytoplankton biomass
variation (random, directional) (Table 2). For random environmental
change, we ran 30 random simulations for each combination of stan-
dard deviation σ, fishing strategy and FMSY multiplier λ. For directional
environmental change, we completed one simulation for each combi-
nation of phytoplankton multiplier γ, fishing strategy, and λ. For each
simulation, we took the average of the outputs over the last ten years. In
all cases this final decade of the simulation did not overlap with the
(model specific) spin-up time required to reach a new equilibrium state
after the application of the factors λ, γ, and σ. For OSMOSE, which is a
stochastic model, 20 replicates were run for each simulation specified
above. Outputs averaged over the 20 replicates were used as the si-
mulation results for the purposes of the rest of the analyses.

2.6. Analysis methods

The specificity of indicators in the presence of random variation was
analysed using the signal-to-noise ratio (Houle et al., 2012). In the si-
mulation framework described above, a change of fishing mortality
provides the input signal and the random variation of the phyto-
plankton biomass provides the noise. The signal-to-noise ratio for each
FMSY multiplier λ was calculated by taking the mean of the indicator at
fishing multiplier λ=1 (across the 30 simulations with random phy-
toplankton biomass) and subtracting the mean of the indicator at each λ
and dividing the result by the standard deviation at each λ (Fig. 1). This
was repeated for each ecosystem model, fishing strategy (HTL, LTL or
ALL), indicator, and standard deviation σ of the phytoplankton biomass
(σ=0.1, 0.2 or 0.3). The signal-to-noise ratio is a standardised measure
that can be directly compared across indicators and models. To un-
dertake comparisons of the specificity of indicators to fishing, we took
the absolute value of the slope of the best-fit regression line through the
signal-to-noise ratio over the range of λ, since this represented the rate
of change due to fishing and not due to the variability of phytoplankton
biomass. We chose to use regression as it was a simple method with
meaningful parameters (e.g. slope) that was easily comparable across
ecosystems. The greater the absolute value of the slope, the more spe-
cific the indicator to fishing (Houle et al., 2012). However, there is no
threshold applied to determine that one indicator is more specific to the
signal (fishing) than to the noise (phytoplankton biomass). Rather, the
slope of the SNR only serves to compare the specificity of an indicator
to fishing relatively to another indicator in this model simulation fra-
mework.

For directional environmental change, we examined the specificity
of indicators to fishing by comparing gradients of change of indicators
in the fishing and the phytoplankton biomass directions. First, to make
cross-comparisons possible, we standardised the indicators to the re-
ference value of the indicator when the FMSY multiplier λ=1 and the
phytoplankton multiplier γ=1. To do this, we subtracted the reference
value from the indicator and divided the result by the standard devia-
tion of the indicator across λ and γ. We created a two-dimensional
matrix (for fishing multiplier and phytoplankton multiplier) for each
indicator, each ecosystem model and fishing strategy. Each element in
the matrix was the value of the standardised indicator at each unique
combination of λ and γ. We took the mean component of the gradient in
each direction of this matrix to apportion, on average, how much var-
iation in the indicator was due to changes in fishing and how much was
due to changes in phytoplankton. The gradient in the λ direction is the

approximate local first derivative (slope) of the fishing component, and
similarly the gradient in the γ direction approximates the local first
derivative of the phytoplankton component. Compared to a multi-
variate linear regression analysis, the advantage of the gradient method
is that it assumes linearity only locally, and compared to a nonlinear
regression analysis, it may be applied to a smaller dataset (here n=6).
The gradients in each direction were calculated by taking the back-
wards difference between each point for that direction (example pro-
vided in Appendix C). To determine specificity from this, we took the
ratio of the |mean fishing component of the gradient| to the |mean
primary production component of the gradient|. The greater the ratio
is, the more specific the indicator to fishing. When the ratio is> 1 then
fishing has a greater effect on the indicator response than changes in
phytoplankton biomass.

3. Results

The results of testing specificity with random environmental change
are summarised with the slopes of the regressions of the signal-to-noise
ratio series (Fig. 2). Specificity of indicators was generally greater at
lower standard deviation σ of phytoplankton: 88% of the indicators
across all ecosystem models and fishing strategies were most sensitive
to fishing (the slope of the signal-to-noise ratio series was highest) at
the lowest σ (0.1). Indicators across ecosystem models and fishing
strategies showed variation in specificity; many had large confidence
intervals as fishing and phytoplankton biomass changed or had low
specificity (slope of the signal-to-noise ratio series close to zero; Fig. 2),
implying that indicators were sensitive to changes in both primary
production as well as fishing.

Results of specificity with directional environmental change are
summarised with the ratio of the |mean fishing component of the gra-
dient| to the |mean phytoplankton component of the gradient| (Fig. 3).
Similar to specificity with random environmental change, indicators
showed differential specificity to directional change in the environ-
ment, across ecosystem models and fishing strategies. Overall, 75% of
indicators across all ecosystem models and fishing strategies had ab-
solute values of the ratio> 1, implying that most indicators in con-
trasted situations were more responsive to changes in fishing than to
changes in primary production. However, the confidence intervals
around the mean gradient were often large.

No general differences between size-structured ecosystem models
(North Sea size spectrum, West Coast Canada OSMOSE and to a less
extent Southeastern Australia Atlantis) and those with no size structure
(Black Sea, Southern Benguela, Southern Catalan Sea, and Western
Scotian Shelf EwE models) were apparent in specificity results with
either random or directional environmental change. However, the re-
sponse of indicators to fishing and environment was particular to each
modelled ecosystem.

Many of the indicators calculated from the Southeastern Australia

Table 2
Crossed factorial simulation design conducted with each ecosystem model to test in-
dicators’ specificity to fishing. FMSY: Annual fishing mortality rate at Maximum
Sustainable Yield; σ: standard deviation of the lognormal distribution of phytoplankton
biomass; γ: multiplier of phytoplankton biomass.

Factors

Fishing strategy FMSY multiplier Phytoplankton biomass variation

Random Directional

Low trophic level 0.25 σ=0.1 (30 runs) γ=0.85
High trophic level 0.5 σ=0.2 (30 runs) γ=0.9
All trophic level 0.75 σ=0.3 (30 runs) γ=0.95

1 γ=1
1.25 γ=1.05
1.5 γ=1.1
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Atlantis model showed moderate to high specificity (Figs. 2 and 3). The
lowest specificity with both types of environmental change tended to be
under the LTL strategy. The trophic-based indicators (TL of the com-
munity and the marine trophic index) showed some of the strongest
responses across both types of specificity; however, their variability was
still quite high so their reliability should be treated with caution. Si-
milarly, the specificity of indicators was moderate to high in the
Southern Benguela model (in general the ratio of the gradients> 1)
especially in the HTL fishing scenario, and with lower variability in
response than in the SE Australia model (Fig. 3).

Specificity of indicators to fishing from the Black Sea model was
generally low for both types of environmental change (Figs. 2 and 3), in
particular for the LTL strategy. In the LTL strategy, most Black Sea in-
dicators did not follow the general trend of highest specificity at low
standard deviation σ, particularly TL of the community and proportion
of predatory fish (Fig. 2). For these indicators, the signal-to-noise ratio
was positive and increased as fishing increased. Specificity with direc-
tional phytoplankton change was low (ratio of the gradients< 1) for
most indicators in both the HTL and LTL strategies, but was high in the
ALL fishing strategy (Fig. 3).

In the North Sea size spectrum model, most indicators (except bio-
mass/landings and TL of the community) were very sensitive to changes
in phytoplankton biomass (Figs. 2 and 3), and therefore were not as
specific to fishing.

In the Southern Catalan Sea model, many indicators, such as mean
TL of the community, proportion of predatory fish, and biomass/land-
ings, had lower specificity to fishing compared to other ecosystems
(Figs. 2 and 3). With directional environmental change, 56% of in-
dicators had an absolute value of the ratio of the mean gradients< 1
(Fig. 3).

Indicators in the presence of both types of environmental change in
the West Coast Canada OSMOSE model had varying degrees of speci-
ficity. For community-based indicators, the slope of signal-to-noise ratio
tended to be the highest at σ=0.1 and under LTL and ALL strategies
(Fig. 2). Mean intrinsic vulnerability and marine trophic index could
not be calculated in the LTL strategy because herring was the only
exploited species in the LTL strategy and it has a TL<3.25. Indicators
with directional environmental change were generally specific to
fishing (all ratios> 1), but in the LTL and ALL fishing scenarios, the
degree of specificity was very different between indicators.

In the Western Scotian Shelf EwE model, there was considerable
variation in specificity (Figs. 2 and 3) but generally, indicators dis-
played high specificity to fishing. With the exception of proportion of
predatory fish under the LTL strategy, all other indicators showed
greater specificity to fishing pressure than to directional change in
phytoplankton biomass.

Given the variability of indicators’ specificity across fishing strate-
gies and ecosystems, we combined all simulation results and

specifically compared the percentage of times when an indicator had
either the highest or the lowest specificity to fishing in each scenario.
Overall, it is interesting to note that two indicators exhibited consistent
behaviour across all ecosystems and fishing strategies. Mean length of
fish in the community had the lowest specificity to fishing in 67% and
56% of the scenarios where phytoplankton biomass was varied ran-
domly or directionally, respectively (Fig. 4). Note that mean length
could only be calculated for three ecosystem models (the non EwE
models), therefore the set of scenarios in which the indicator could be
compared to others was reduced to 9 (3 ecosystems and 3 fishing
strategies) for random as well as for directional change in phyto-
plankton biomass. By contrast, the biomass over catch ratio had the
highest specificity to fishing in 43% of all scenarios run (Fig. 4).

4. Discussion

Using a multi-model, multi-scenario approach for a range of
exploited marine ecosystems, our results demonstrated that many of the
indicators that we tested responded more to changes in fishing than to
changes in phytoplankton biomass. In particular, the biomass over
catch ratio indicator was the most specific to fishing. This result was
robust to the fact that the specificity of indicators with random en-
vironmental change almost always decreased as variability increased.
In a majority of the scenarios of combined directional changes in fishing
and phytoplankton biomass, the tested indicators were able to detect
the ecosystem effects of fishing more strongly than the change in
phytoplankton biomass: the specificity of the indicators to fishing was
more robust for biomass over catch ratio, mean life span, TL of the
community and Marine Trophic Index (specific to fishing in 75–76% of
the scenarios), and less robust for intrinsic vulnerability and proportion
of predatory fish (specific to fishing in 55–56% of all scenarios) (Fig. 3).
Likewise, a few empirical studies have shown that these ecological in-
dicators and similar ones were sensitive to changes in the environment,
but that fishing generally had a stronger effect, though this varies
among ecosystems (Blanchard et al., 2005; Link et al., 2010). Sup-
porting empirical evidence that indicator behaviours depend on eco-
system traits (Heymans et al., 2014), fishing history and the pattern of
fishing (Shannon et al., 2014), our simulations showed that indicators
were differentially specific to fishing across ecosystems and fishing
strategies. Several lessons and/or limitations became apparent in the
course of our comparative work.

4.1. Ecosystem traits influence indicator responses

There was no universal response of indicators to fishing in the
presence of environmental change. Therefore the ability of indicators to
monitor ecosystem effects of fishing must be anchored to a given eco-
system and fishing context, e.g. if the current level of fishing was very
high, as in the Southern Catalan Sea, or if one particular fish species
was especially sensitive to primary production, as in the North Sea. This
makes expert interpretation of the results especially important, and this
is a key part of the IndiSeas approach where local experts are involved
in the interpretation of results in the context of the ecosystem (Shin and
Shannon, 2010; Bundy et al., 2012; Shin et al., 2012; Coll et al., 2016).
In the southeastern Australia ecosystem for example, the fact that the
specificity of the indicators was highest under the HTL strategy could be
due to the fact that it is mostly HTL species that are currently surveyed.
Therefore, in this ecosystem, the community-based indicators re-
sponded more directly to fishing pressure with little dilution by
planktivorous fish signals. Moreover, the dominant role of mesopelagic
fish in the system (and their potential to dominate ecosystem outcomes
in response to both phytoplankton and system productivity even with
alternative levels of fishing) was not realistically reflected in the cal-
culated indicators as mesopelagics are not surveyed in southeastern
Australia.

In the Black Sea, the relatively low specificity of indicators can be

Fig. 1. Conceptual plot illustrating the calculation of the signal-to-noise ratio (SNR) for
each indicator I as a function of λ the multiplier of fishing mortality (the signal). Such a
SNR plot corresponds to one single indicator and one single scenario (e.g., fishing strategy
HTL and 30 random phytoplankton biomass with sd= 0.1). The dashed line corresponds
to a linear regression of the SNR as a function of λ.
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related to the model’s sensitivity to changes in phytoplankton biomass.
The nonlinear dynamics of the ecosystem are indeed driven by complex
competition between the middle-TL groups for zooplankton, which is
tightly coupled to primary production. By contrast, in the West Coast of
Canada model, the high variability of indicators’ specificity (Fig. 3)
could be explained by the variation in response of LTL herring (Clupea
pallasii), which is the most abundant species (almost 10 times more than
some HTL species). When the phytoplankton multiplier was γ=1.05 or
1.1, herring increased dramatically in response to the increase in phy-
toplankton and euphausiids, which resulted in a drastic increase of seal

biomass and reduction of other species. Then when λ increased to 1.5,
fishing played a dominant role and thus the advantage of having more
phytoplankton to herring diminished and all fish behaved similarly.

In the North Sea, the low specificity of most indicators is to be in-
terpreted in the light of the species composition. It is likely that changes
in plaice abundance was dominating specificity of indicators, since
plaice have a high growth rate and feed on macroinvertebrate and
zooplankton which respond strongly to changes in primary production.
In the Catalan Sea, the low specificity of indicators to fishing could be
explained by bottom-up control of the foodweb combined with the high

Fig. 2. Specificity of indicators to fishing with random variability in the phytoplankton biomass. The “random” specificity is measured as the absolute value of the slope of the linear
regression of the signal-to-noise ratio—fishing mortality FMSY multiplier series, for each standard deviation σ of the phytoplankton biomass (σ=0.1, dark gray data points; σ = 0.2, black
data points; σ = 0.3, light gray data points). Indicators are on x-axis (Len: Mean length of the community, TLco: Trophic level of the community, Pred: Proportion of predators, Lifesp:
mean lifespan of the community, B/Catch: total biomass to landings ratio, Vulner: mean intrinsic vulnerability of the catch, MTI: Marine Trophic Index), ecosystem models are in rows,
and fishing strategies in columns (HTL: High Trophic Level strategy, LTL: Low Trophic Level strategy, ALL: All trophic levels strategy). The greater the absolute value of the slope of the
regression, the more specific the indicator is to fishing. Error bars are 95% confidence intervals of the slope estimate. Wide error bars reflect higher uncertainty in indicators’ specificity
and departure from the linearity assumption for the SNR curves. Mean length is not calculated by EwE models.
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current fishing mortality rate Fcurr used in the model or due to a long
history of fishing exploitation (Shannon et al., 2014; Coll et al., 2016),
or to both. The current over-exploitation of the system, which has been
documented to occur for a long period of time (Coll et al., 2008), could

mean that the model system is stressed even when the fishing multiplier
λ is low.

The strength of our simulation framework is that it allowed for
specificity tests of a range of indicators across a variety of ecosystem

Fig. 3. Specificity of indicators to fishing, with
directional change in phytoplankton biomass. The
“directional” specificity is measured as the abso-
lute value of the ratio of the mean fishing com-
ponent of the gradient to the mean phytoplankton
component of the gradient, for the standardized
indicator response to changing fishing FMSY mul-
tiplier λ and phytoplankton multiplier γ, for each
ecosystem model (rows) and fishing strategy
(columns; HTL: High Trophic Level strategy, LTL:
Low Trophic Level strategy, ALL: All trophic levels
strategy). The more specific an indicator is, the
greater the absolute value of the ratio. The hor-
izontal dotted line corresponds to a ratio of gra-
dients equal to 1 (i.e. equal to log(2) with the log
transformation used). Error bars are 95% con-
fidence intervals of the ratio (n= 5 gradients ra-
tios). Len: Mean length of the community, TLco:
Trophic level of the community, Pred: Proportion
of predators, Lifesp: mean lifespan of the com-
munity, B/Catch: total biomass to landings ratio,
Vulner: mean intrinsic vulnerability of the catch,
MTI: Marine Trophic Index.

Y.-J. Shin et al. Ecological Indicators 89 (2018) 317–326

323



and fishing contexts using standardized scenarios and specificity me-
trics. This comparative approach increased the robustness of the pre-
dictions of indicator responses by capturing a wide range of uncertainty
associated with ecosystem and model uncertainties. However, a po-
tential drawback is that the scenarios were not always realistic enough
when focusing on the local ecosystem and fishing contexts. Even though
most simulated fishing mortality values encompassed current estimated
fishing mortality values (Appendix D), future ecosystem-specific work
could test indicators’ specificity with simulations based on the current
fishing pressures, rather than using the idealised Fmsy reference point
which served to standardize scenarios across ecosystems. Also, non-
independent fishing mortality values for different species could be po-
tentially simulated in the case of mixed fisheries. Concerning the en-
vironmental variability and directional change, our phytoplankton
biomass scenarios were overly simplified in the way of representing the
broad-scale impacts of the environment on indicators’ response to
fishing. Again, this was constrained by the comparative approach,
where we had to rely on a driver common to all the various ecosystem
models used in our study. We recommend that further development of
indicators’ testing for a specific ecosystem should be underpinned by a
set of relevant environmental drivers (e.g., sea temperature, primary
production, salinity, oxygen concentration, mixed layer depth) that
would be reflective of the local ecosystem dynamics and functioning.

4.2. Ecosystem models influence indicator responses

The multi-model, multi-ecosystem approach was useful for cross-
comparison of indicator specificity across a range of ecosystem and
model attributes. We used standardized changes in fishing mortality
and phytoplankton biomass, so as to make indicators results compar-
able across ecosystems and models. However, differences exist in the
way fishing and phytoplankton force the models, and impact the dif-
ferent species or functional groups. We selected model applications that
were published and peer-reviewed, and fit to time series (EwE and
Atlantis models) or time-averaged (size spectrum and OSMOSE models)
biomass and landings data to ensure model credibility. However, it was
not the purpose of this study to evaluate the degree of realism and
confidence of each model used. We note that the variety of the models
could make it difficult to discriminate between differences in indicator
behaviour due to model or ecosystem properties. For example, the
models represent life history differently with different mixes of species;
many EwE models include both vertebrate and invertebrate species but
are unstructured or only partially size-structured, whereas the size
spectrum model includes only fish species but is fully size-structured.
Although these differences in model structure can influence simulation

outcomes (Heath et al., 2013), there were no clear differences in in-
dicator specificity between size-structured and unstructured or partially
size-structured models in our results. In future work, this should be
addressed by using several models for a particular ecosystem (over a
similar time series) to determine which behaviours were due to model
attributes and which were due to system attributes. In particular, one
limitation of our work was that only a few ecosystem models were able
to produce size-based indicators, so the evaluation of the specificity of
size-based indicators was limited to a few case studies. Finally, the set
of models used are all dynamic so future work should go beyond our
present comparative study based on equilibrium analyses. Indicators
are used to monitor changes in the system attributes and are thus ex-
pected to be responsive in a relatively short time scale to changes in
fishing pressure. The time of response, or responsiveness, of indicators
is a property that clearly needs to be quantified so management deci-
sions can be evaluated within an appropriate time frame. This is all the
more critical for determining the duration of experimental measures,
particularly when it comes to implementing marine protected areas.

4.3. The analysis of indicators of fishing effects must integrate the influence
of a changing environment

Although a majority of the scenarios with directional change in
phytoplankton biomass showed that indicators were more specific to
fishing than to phytoplankton biomass, the responses were hetero-
geneous and were dependent on the ecosystem. The environmental
influence on indicator specificity should therefore be accounted for
when using indicators for management purposes. For example, differ-
ences in growth rate and productivity have been shown to influence
ecosystem impacts of fishing (e.g. Bianchi et al., 2000). It is not safe to
assume that reducing fishing pressure will improve an indicator value
(and therefore the ecosystem status) if the primary production changes
at the same time. Rather, this change in primary production should be
accounted for. In addition, our results suggest that if primary produc-
tion variability increases, which is likely to occur as a result of global
change (Winder and Cloern, 2010), indicators may become less specific
to fishing. This might be expected in the southern Benguela, for ex-
ample, where variability in upwelling indices increased in the 1990s
and 2000s (Blamey et al., 2012), whereas in the northern Benguela
ecosystem, the reduction in fishing pressure in the 1990s was not fol-
lowed by an increase in ecosystem health due to reduced primary
production (Heymans and Tomczak, 2016). Our simulations unveiled
the sensitivity of mean length of fish to variability and change in the
phytoplankton biomass, highlighting that caution should be used in
interpreting this indicator in the context of fisheries management. Fish
mean length integrates major processes occurring in a global change
context making it significant to monitor the health status of marine
ecosystems. However, without a suite of complementary indicators in-
forming on population and community changes (e.g., fish recruitment,
length at age, mean maximum length), it is challenging to interpret its
variations, and to disentangle whether the decrease in mean length is
due to fishing (Shin et al., 2005) or to climate change (Cheung et al.,
2013, Lefort et al., 2015), or on the contrary whether an increase is due
to favourable environmental conditions (leading to recruitment success
for example, or increased growth rate) or due to release of fishing
pressure (Bundy et al., 2010).

For indicators to be useful in decision-making, there are other
performance features apart from specificity, which need to be tested in
a similar systematic way. Future work should provide more evidence
for indicators’ sensitivity (shape of response curves, range of sensitivity)
and responsiveness (time of response) for quantifying overall in-
dicators’ performance and robustness in a variety of conditions. For
general ecosystem-based management, system status and trends should
be characterised and underlying causes identified so that appropriate
management responses can be invoked accordingly. Changing attri-
butes of fishing pressure (e.g. gear type, gear selectivity, effort, etc.) is

Fig. 4. Rank of indicators specificity, expressed as the % of times an indicator has the
highest specificity to fishing in the random (absolute value of the slope of SNR; black
bars) and directional variation (absolute value of the ratio of the gradients; dark grey) of
phytoplankton biomass; or the lowest specificity (dark stripes for random, light stripes for
directional change in phytoplankton biomass), across all scenarios and ecosystems.
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the main management “lever” (Garcia et al., 2003), thus indicators that
are sufficiently specific to fishing are required for management-relevant
performance to be assessed (Rice and Rochet, 2005).

Our results have shown that the behaviour of ecological indicators
needs to be interpreted in the context of the local ecosystem, such as
accounting for exploitation history and physical and biological eco-
system characteristics. We did not find any indicator that was system-
atically more specific to fishing than to phytoplankton biomass across
all scenarios in the ecosystem models we tested, confirming the need to
examine a suite of indicators (e.g. Fulton et al., 2005; Link et al., 2010).
The pattern across a suite of indicators can help to attribute changes in
indicators to different drivers, where a single indicator cannot. How-
ever, our study has shown that some indicators, such as the biomass
over catch ratio, seem to capture fishing effects more specifically even
in the presence of environmental variability and change. In contrast,
mean length of fish needs to be interpreted with much more caution,
given its sensitivity to environmental perturbations. This study can be
considered as one of the first milestones for testing the performance of
indicators in order to build decision-making tools or management
strategy evaluation based on ecosystem indicators for an EAF.
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