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Summary 

Ecosystems are dynamic systems and the study of their functioning and evolution 
requires the development of dynamic biogeochemical models. A wide application and a 
pronounced development of this type of model has taken place during the last two 
decades due essentially, to the development of computer technology, which has 
permitted the handling of very complex mathematical systems, and also to the 
increasing need of understanding marine ecosystems and their dynamic response to 
environmental stresses from localized pollution to global climate changes. 
 
A review of the progresses realized in ecosystem modeling, starting from simple NPZ-
type models to more complex models, describing in parallel the biogeochemical cycles 
of different biogenic nutrients, is made in this paper. The evolution of the complexity 
introduced to the model's structure and in the parameterization of biochemical laws, is 
analyzed. The increasing coupling of ecosystem models with hydrodynamical models in 
order to assess the role of physical processes on the ecodynamics is discussed. The 
efforts made to develop ecosystem models more and more consistent with the available 
observations by, for instance, improving the calibration of the most sensitive model 
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parameters and/or by determining the "optimal" model structure using data assimilation 
techniques are outlined.  
 
Finally, some regional applications of the coupled physical-biogeochemical models for 
various oceanic basins and coastal and shelf seas, as well as the recent attempts at 
incorporating them into the global carbon cycle models are described. 
 
1. Introduction 
 
The oceans exhibit highly diverse and variable ecosystems governed by complicated 
sets of physical-biogeochemical interactions between the atmosphere, the surface ocean, 
and its interior, on a variety of spatial and temporal scales. The marine biogeochemical 
cycling involves organic matter generation by photosynthesis by primary producers 
constituting the first trophic level of the food web, its transfer to higher trophic levels by 
the feeding activities of animals, and its decomposition back to inorganic forms (Figure 
1).  

 
Figure 1. Schematic simplified representation of the organic and  

inorganic matter cycling in the ocean. 
 

Particulate non-living organic material (the so-called detritus) is formed through the 
natural mortality of phytoplankton and zooplankton, or through the production of fecal 
pellets. Dissolved organic matter is formed by soluble organic materials released during 
excretion and exudation. These organic materials are then decomposed by microbial 
processes. The growth of primary producers is usually limited by the availability of one 
or several biogenic elements such as nitrogen (NO3+NH4+NO2), bioavailable iron (Fe), 
phosphate (PO4), and dissolved silicon (Si(OH)4). The silicon cycle is relatively simple, 
affects primarily diatoms and involves only inorganic forms. The phosphorus cycle is 
also relatively simple; organic phosphate is converted back to an inorganic form which 
then becomes available again for uptake by phytoplankton. It is a rapid process, and 
therefore phosphorus is generally not limiting in the marine environment. Recycling of 
nitrogen is a more complex process. Organic nitrogen is regenerated in the water 
column by bacterial activities and zooplankton excretion in the form of ammonium, 
which is then oxidized to nitrite and then to nitrate in the nitrification process occurring 
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in the oxygenated part of the water column. In the anaerobic systems, mostly in 
sediments, nitrate is consumed as an oxidizer instead of oxygen. This process is referred 
to as the denitrification, and results in conversion of nitrate by bacteria, into first nitrite 
and then to nitrogen gas, thus leading to the loss of nitrogen from the system. The 
atmospheric nitrogen gas may also be converted to organic nitrogen compounds by 
some phytoplankton species (e.g., the blue-green algae).  
 
The ocean is the largest reservoir of carbon with rapid exchanges with the atmosphere, 
and it is the largest net sink for anthropogenic atmospheric CO2. A fundamental process 
regulating the air-sea balance of CO2 and the amount of CO2 fixed in the ocean is the 
biological pump; namely the efficiency of photosynthesis, the foodweb structure and the 
amount of new nitrate entered into the euphotic zone, coupled with remineralisation at 
depth. In general, CO2 is converted from inorganic to organic carbon by the 
photosynthesis of the phytoplankton. This is then consumed by the higher trophic levels, 
and some CO2 is recycled as inorganic bicarbonate formed by interaction of free 
dissolved CO2 with water. Some losses may occur from the ocean surface in gaseous 
form. Respiration and remineralisation processes also contribute to CO2 production in 
the water column. (see Marine biogeochemical cycles: effects on climate and response 
to climate change). 
 
All the biogeochemical processes and interactions between living and non-living 
components of the ecosystems cannot possibly be explored through observations alone. 
The satellite-based observations, which are the only means of synoptic information on 
regional and global scales, are restricted to the upper few meters of the water column, 
and their correct interpretation requires additional knowledge on the physical-
biogeochemical processes taking place in the ocean interior. Comprehensive 
observational programs for basin-scale measurements are economically not yet feasible, 
and have to make compromises between temporal and spatial coverages as well as on 
the number of variables to be measured. The observations alone are therefore unable to 
provide a complete description of ecosystems. Observations generally provide 
distributions of concentrations and/or biomass, but hardly yield details on the spatial 
and temporal properties of the rates and processes controlling these distributions. Some 
mathematical tools are necessary to interpolate and extrapolate the available data to 
other parts of the region, and to complement missing data in a dynamically consistent 
way. The relative importance of different factors and their response to different 
conditions can be most efficiently analyzed using models, by varying individual factors 
independently. 
 
The ecosystem models may therefore be defined as mathematical tools that help to 
further understand, conceptualize, and predict marine environmental processes using a 
simplified representation of the real world in the form of a series of differential 
equations. Biogeochemical modeling has made considerable progress during the last 
two decades thanks essentially to the development of computer technology, and 
increasing public concern about environmental stresses spanning from localized 
pollution to global climate changes. In the following sections, highlights from some 
important modeling initiatives are presented in order to describe the progress made in 
marine biogeochemical modeling within the last ten years. The biogeochemical models 
are first classified according to their objectives. The structural complexity introduced 
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into the food webs and nutrient cycles are then described. It is followed by a description 
of efforts on the coupling of upper ocean physics and biogeochemistry, and of the role 
of physical controls on the biological production. The next section deals with inverse 
approaches used in the biogeochemical modeling for a more realistic estimation of the 
model parameters by means of assimilating the available data. The rest of the paper 
describes the regional applications of the coupled physical-biogeochemical models for 
oceanic basins and coastal and shelf seas, as well as the recent attempts of incorporating 
them into global carbon cycle models. 
 
- 
- 
- 
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