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A brief review of marine pollutant transport processes s
grven, with the objective of introducing the basic concepts
required for studying these procesases, The subject is
obviousty one of great exten and detail, and a continuously
developing area of research that 18 motivated by many practical
interests, Marine pollutant transport processes are of great
importance in many aspects of marine science, including
engineering services related to marine waste disposal, the
assesament of adverse effects of shipping and industrial sites,
and the conservation of water auality 1n coastal and inland
seas,

While most of the steps in the derivations are given for the
benefit of the student, a more complete discussion and detailed
derivations of the equations can be found in a number of basic
books on fluid dynamics (Batchelor, 1967), and transport
processes (Csanady, 1973: Fischer et a/., 1979, Kullenbergyg,
1982) . Some of the fundamental theorems utilized in the
following can be found in books on university level calculus
(Hildebrand, 196%),

The basics of hydromechant e theory s braefty summarized in
Section 1, Simple solutions to the turbulent transport
€équations are reviewed in Section 2. The basics of shear Fflow
dispersion are then provided in Section 3. Applications to

transport of Suspended sediments are considered in Section 4,
Estuarine transport processes are reviewed in Section 5.

1. FLUID MOTION AND DIFFUSION IN FLUIDS

The governing equations for fluid motion and diffusion will be
briefly reviewed. The equations wil} be derived from bas:
hydromechanical concepts, .

1.1 CONTINUITY (MASS CONSERVATION) EQUATION

Consder a materral volume (a volume made of fluid

particles or material poOrNts) V bounded by a material

sSurface 8.0 If mass is neither created nor destroyed

within this volume, we can express its conservation by
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where p is the density of the fluid, and d/dt
represents a total or material derivative. Let u

be the fiuid velocity (also valid on S) and N be the
normal to this surface. The above expression can be expanded
employing Leibnitz’ rule
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This integral form expresses the fact that the local rate of
change of mess within the volume is balanced by matter exported
or imported through the bounding surface. Through the
divergence theorem, this is equivalent to

(1.2)

ap - :
I ( == + Sepu ) dV = O (1.3)
vy ot A

Since V is arbitrary, the_integrand must vanish for any and all
such volumes, The equation given by the vanishing integrand is
the continuity equation. Alternatively we can write (1.3)

as

Dp

+ p Veu = O (1.4)
Dt

by making use of the definition of the material derivative S

DX ax -
-- = -- %+ us¥ X . (1.5) ,
Dt at

[Note the different notations used for material derivatives of
an integral quantity in (1.1) and that of a field property in

{(1.4), following Batchelor (1967)]. An rncompressible

Fluid is defined as one in which the density of material

elements of the filuid does not change, i.e. '
Vo= O . (1.6)

1. 2 MOMENTUM (MOMENTUM CONSERVATION) EQUATION

Newton’s Second Law of Motion states that the rate of
change of momentum P of a maternal element of fluid should
pe balanced by the total force FT applied on the flu:d

dﬁ -
= = Fr s (1.7)
dat .

The momentum of the fluid 15
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P = j pu dv (1.8)
v

and the lotal gpplied force is due to body (volume) and surface
forces (F and X respectively)

Fr = I pF dV  + f % das
MakKing use of Leibnitz’ rule and after reconbinations of -~ he

resulting terms, the left hand side of equa-ion (1.7) can be
shown to be

aP [ d . -
ey o . -= (puU) dv + pU Uen dS
dat  Jy dt : s
(1.10)
P D'ﬁ - 9 &
= p -- dV + J u ( i + Vepu ) dv .

Here the second term vanishes by virtue of the continurty
equation (1.3). The first term of (1.9) represents the body
forces, which in this case is the gravity g (force per unit
mass)

F = pd .,

P g (1.11)
whereas the second term in (1.9) is the surface stresses (force

per unit area) integrated over the material surface encliosing
the fluid.

It can be shown that (Batchelor, 1967) the surface sStresses can
be expressed as the normal components of a 3tress tensor

g = Gi-AWiTh respect to the outward

normal n to the surface, 8o that through divergence

theorem

f 3% ds = J geh dS = J JegdVv : .
s S v (1.12)

By assembling (§.10), (1.11) and (1.12), we can again obtain a
volume integrated equation which has to vanish for an arbitrary
voliume, so\that the integrand yields

-3

o 2% - b5 + Veg
- - = + [ W
Dt (1.13)

The stress tensor g includes both normal and shear

stresses, Part of the normal stresses is the fluid pressure

P. The remaining normal and shear stresses are generated

as a result of the motion of a viscous fluid, and are therefore
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essentially related to the motion. The stress tensor can thus

be decomposed into two parts
A

g=-pl +d
or ' . (1.14)

Oij = Py i ‘
where p is the pressure and. d. . is the

deviatoric stress tensor, the.fatter peing due to the motion of
the fluid (Batchelor,1967). For a simple fluid in the laminar
regime, the stress tensor a,; c¢an therefore be

related to the rate of strain and the well-Known Navier-Stokes
equation can be obtained. The details of these derivations are
to be found in Batchelor (1967).

For an incompressible fluid, the Navier-Stokes equation i8

Do . 1 v o
e ] Y = e + VvV u .
Dt p B v ' (1.15)

Here v is the Kinematic viscosity with dimensions of

Le1-! and the last term on the right hand side

represents the frictional (viscous) forces (per unit mass),
alternatively representing the diffusion of momentum. The
above equation of motion expresses tlhe fact that fluid
accelerations are generated in response 1o gravity, pressure
gradients or viscous friction..

The momentum equation is modified considerably on a moving
frame of reference. Consider the earth’s motion wilh respect
to a fixed (inertial) frame of reference, After transforming
the equations from the inertial 1o the moving frrame of
reference, fictitious terms arise i1n the momentum conservation
equation, being related to the angular velocity Q of
the earth, and as a result of the redefinition of the material
deryvative with respect to the moving coordinates (Batchelor,
1967):
DU, 2GxG + Gxdxk = B - - b + WA
D1 XU + OQXOQXXx = ¢ m P vvV-u . (1.16)

The second term on the left hand Side 15 Known as the

Coriolis acceleration (or Coriolis force per unil mass of

the filuid if carried over on the right hand side). This term
represents an acceleration that is normal to both the motion
(the velocity vector) and the angular velocity vector, and
therefore the motion is deflected sideways (with respect 1o
the velocity that would occur on an inertial frame), depending
on the position on the earth,. The third term on the left hand
side represents centrifugal acceleration resulting from the
rotation and can simply be expressed as a force

IQIEP acting outwards from the rotation axis (x

being the position with respect to the earth’s center and r
peing the position measured perpendicular from the rotation
axis).

Due to the conservative nature of the gravitational and
centrifugal acceyerations. these forces can be embedded (if the
fluid is homogeneous) in the modified pressure P:




1
= - - ¥VP (1.17)
P
so that, in éffect, equation (1.16) simplifies to
Du o b 1 o
-~ + 20xUu = - - P + vvau.
Dt P (1.18)

1. 3 THERHODYNAMIC (ENERGY CONSERVATION) EQUATION

The First Law of Thermodynamics expresses the energy
conservation

QEI dH daw

= + —-- , : (1.19)

dt at dat

nameiy that the rate of change of the total energy (ET)

1S balanced by the rate at which heat (H) is supplied to
the fluid and the rate at which work (W) i1s done on the
fluid by the surroundings. The total energy for a material
volume of fluid is definéd.as

Ey = pe dv .
T fv. (1.20)
where '

€ = e + 5 Ued - gex (1.21)

i3 the total energy per unit mass, including the internal
energy (or specific entropy) e, the Kinetic energy (second
term), and the potential energy (third term) components, Here
¥ is a position vector with respect to an arbitrary

datum (X inc¢reasing in the opposite sense of the

gravity vector @ leads to positive values of the potential
energy).

The first term in (1.19) can be expressed as follows,
consecutively using the Leibnitz’ rule, the divergence theorem,
and the continuity equation. (1.4)

dE; . d ' ape . &
wod £ = pe dV = -—= 4 pe uen dS
dt at Jy v ot s

ape -
I { -—-«+ Ve(peu) ) av
v at
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" De
= J p-- dvV (1.22)
y Dt

On the other hand, we define

dH 2 A
- = PQ dvV - I qen dS
dt v S

& Iv (il Veq) dVv (1.23)

whgr‘e Q is the rate of internal heating (per unit mass) and
(-q) the heat flux (per unit surface area) entering the
fluid volume through the enclosing surface,

The rate of work done by the surrounding on the fluid is due to
the stresses 3 applied on the enclosing surface which
is deformed with velocity u, 50 that (using {1.12)

dw * S A -
A2 = ey dS = {gen)eu dS
at ~ Jg 5

= | (Usg)en dS

S )
T > |
“ )y Vo {ueg) dv (1.24) |

Combining (1.22), (1.23) and (1.24) vyields (for arbitrary
volume element V)

De - -
-~ = - Veq + pQ + Ve (urg)

P bt ) (1.25)

The last term on the right hand side can be expanded mak ing use
of the momentum equation (1.3)

Ve (Ueg) = Ue (Veg) + (QeV)oel

= a,(p?§ - pa) + (ge¥ )l
Dt
= pﬁ-'—)‘—l - pUsT(FeX) + (GeV)eU d
Dt .
D 1. . o -
= 95{ ‘é”'“ - gex) + (QeV)eu . (1.26)

The above equation expresses the conservation of mechanical
energy. substituting (1.26) in (1.25) and making use of




(1.21), ruoe energy equation 1s reduced to a form that accounts
solely for the copservat:on of thermal energy (i.e. the
thermodynamic equation): -

De - -
P-- = -Veq + pQ + (geV)eu
Dt (1.27)
The l1ast term, representing the working of the surface strresses

1N deforming the fluid, can be written alternatively (using
(1.14) and the continuity equation (1.4)) as

(QeV)eU = - pVeu + (QeV)eli
= pil - + p@ ‘1-86)

where ¢ represents the heat'generated (mechanical
energy dissipated) by viscous friction,

The diffusive (conductive) heat flux is formulated through
Fourier’s Law which linearty relates the flux to the local
temperature gradient (in an isotropic medium, ¢f. Batchelor,
1967) as 0

d - - k9T | (1.29)

0 thidt the heat flows from regions of high temperature to
those of low temperature, The proportionality constant
K i5 the thnermal conductivity.

Substituting (1.28) and (1.29), equation (1.27) takes the form

D D 1
R S Texdr o+ () (1.30)

6E B pa Dt
The thermodynamic laws describing the state of the fluid must

be used to transform the thermodynamic¢ equation to its final
form, The Second Law of Thermodynamics states that

Ds De Dvu
i = o T + p —
Dt Dt Dt
De p Dp
T o=- - o == (1.31)
Dt p= Dt
which is equal to the left hand side of (1.30). Here 8 i3
the speceific entropy and v=1/p iS5 the specific
volume.,

The thermodynamic state of a fluid of fixed composition (fixed
mixing ratios of its constituents) is fully described by a3
unique relation of three of its thermodynamic variables. This
relation is therefore called the equat:on of state, For
seawater, the equation of state i3 an empirical nonlinear
equation relating for instance, pressure, density and
temperature as well as salinity (since the composition of
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seawater changes with salinity). The equation of state can be \x
linearized about l1ocal (subscripted) reference values, and
neglecting pressure effects we can write

p = 1 - ae(T-T7T + QAc (S-S .

po [ T( o) S( o)] (1.32)
Since specific entropy 8 in equation (1.31) is also a state
vnriahlg.:ot can be related to other state variables, say
temperature and pressure, so that

Ds as DT a3 Dp

T -- = T(-- -- + T T
Dt aT P pt ap Dt
(1.33)

where subscripted parantheses denote differentiation for
constant values of the subscripts. The rate of change of the
heat content Tds with respect to temperature is called the
specific heat. The specific heat at constant pressure is
thus a constant

93

bt = .34
T (Bf)p ?p (1.34)
The second term of (1.33) can be expressed through the
Maxwell relation

(63) au) 1 (ap)
3o’ T - “W2p = “ol22)p
) . dT aT
P e (1.35)
whereas using (1.32) we make the approximation
]

1 dp ap

olarle ® o lorle ® 70T

P Po (1.36)

Substituting (1.31),(1.33),(1.34),(1.35) and (1.36) ‘into [1.30)
yields

1
~-- = VeKVT + --(Q+®)
Dt c

DT ap T Dp
¢p P DU P (1.37)

where Kzx/(pc,) is the thermal qdiffusivity
coefficrent,

The above equation is valid for a general (compressible,
inhomogeneous) moving fluid, The second term on the left hand

side is often small and in f..t vanishes for a fluid that issat
rest, Seawater can be assumed to be incompressible and, ts
contribution being small, this term can again be neglected. | f

we also neglect the heating due to any internailly distributed
sources (e.g. solar radiation) and the frictional generat.on of
heat, we can set Q:=-¢:=0, Under these assumptions, we P
then simplify (1.37) to have the heat equation




oT ~
-— 4+ UeVT = VekVT (1.38)
at . .

1.4 DIFFUSION FEQUATION (CONSERVATION OF MASS FOR
DISSOLVED CONSTITUENTS TN A FLUID)

In this Section we will derive the conservation eguations
governing the diffusion of dissolved substances that may be
present in a fluid, Before considering the case of a weak
solute, consider a binary system consisting of a mixture of

two different fluids, The density Pa of the first

constituent represents its mass per unit volume of the mix»ture,
and likewise Pg represents the density of the '
second constituent per unit volume of the mixture. The density
of the fluid mixture is then

[ (= +t Pp .
A B (1.39)
we can define the concentration of each constituent in the

fluid as the mass of each constituent per unit mass of the
mixture, i.e€,

Pa.
cp = -0, g = Pp (1.40)
P p
so that
Cp *t Cg = 1 (1.41)

by virtue of (1.39).

In a moving fluid mixture, we define the fluxes (passing
through a fixed surface) of each constituent as

-~ -
N = u
A = Pala (1.42.a,D)
Ng = Pplp -
where GA and GB are "velocities"
assigned to each constituent. These are not real (particle)

velocities, but rather hypothetical velocities that an
infinitesimal group (or c¢loud) of particles would have on the
average. It can be verified that these fluxes represent the
momenta of each constituent per unit volume of the mixture,
The total momentum (or total flux) of the mixture i8

- P2y -
PU = PaUp + Pglg
- (1.43.a,b)
- - -
u = CAUA + CBUB

’ -
We thus define the hydrodynamic velocitly u of the
mixture by (1.43.Db).

The fluxes defined in (1.42.a,b) are with respect to a fixed
obhserver and involve both diffusion and bodily transport
- (convection) with the fluid velocity. For examplie, we can

]
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write (1.43.a) as

NaA = PaAlUp

PA(UA-U) + ppU
ACTA A (1.44)
s0 that the first term represents the transport relative to an
observer moving with the fluid (i.e. diffusive transport) and
the second term represents the convective (advective)
transport.

The diffusive flux is commonly modelled by Fick’s Law (an
analogue of Fourier’s Law in heat conduction) which relates
this flux to the l1ocal gradients of the density of each

constituent., Iin the general non-isotropic¢c case, the flux !
vector can be expressed as .the product of a tensor coefficient
with the gradient vector. I¥f the medium is assumed to be

isotropic, the constant of proportionality is a scalar and we
can write

pallips-U) = - Dag Ve
AT A TR (1.45)

for constituent A and simitlarly for constituent B. Here, the
diffusion coefficient Dag characterizes the diffusivity

of constituent A in medium B, and likewise the diffusivity of
constituent B in A is represented by DBA'

we consider a fixed control volume V enclosed by a
surface S, and write a statement of the conservation of

mass for each constituent. For constituent A we have
] - "~
- = pAdV: - NAOI‘IdS + r‘AdV.
at Jy s v
, (1.46)

i.e. the rate of change of the mass in volume V is increased by
the flux of mass entering through the fixed surface S (with
outward normal n) and by any Sources nf material in

the voiume. Here CaA is the rate of production of. the

muss of constituent A per unit time per unit volume of the
mixture,. These local sources of mass in a binary system can be
important as a result of the chemical interactions between the
two constituents, Since the total mass of the mixture should

be consgrved.
ra + g = 0, (1.47)

i.e. the rate of production of eirther constituent must be at
the expense of the destruction of the other.

Using the divergence theorem, the first term on the right hand
side of (1.46) can be converted to a volume integral for which
the volume V iS grbitrary. Then, the conservation 1aws

e come
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--8 4 YeN, = r
at & N
and (1.48.4a,0h)
OPB -
--% 4+ VYeNyg = rg .
at - B B

By adding together (1.48.a,b) and utilizing the definitions
(1.39),(1.42.a,b), (1.43.a) and (1.47) we arrive at

ap -
== + Vel(pu) = O, (1.49)

at

i.e. the continuity equation (1.3) being re-derived, proving
that the total mass of the mixture i8 conserved,.

substituting (1.44) and (1.45) in (1.48.a) and utilizing
(1.40.a) yields

30PCA) | Gulpeal) = FeDagTpc, + ©
—————— . = .
31 A AB A A (1.50)
or
p12A 4 TeTca) = VeDapVPCp + F
= s L} = L ’
at A ABTT A A (1.51)
obtained by expanding terms and making use of (1.49)., A
similar equation 13 obtained for cy. If the mixture S
relatively homogeneous we ¢an assume paconstant. The

diffusivities DAB and DBA can also be assumed constant.
Then the conservation egquations are

De r
A 2 _A
bt - PasV A * o
ana ‘ | (1.52.a,b)
C r
B 2 B
—- - D C + A
B BAV CB *

iIf the presence of each constituent influences the density, S0
that p 1= hot constant, it c¢an be verified that the

equat 1ons are coupled through density, which then means that
the diffusion equation (1.51) (and its counterpart for CB)

must be solved together with the continuity (1.4), the monenzum
(1.18) equations, and an equation of state incorporating the
effects of the constituents on density such as

i

p p(pu CA: cB)

(1.53) /

Likewise, 1n the case of sea water, havaing temperature and
salinity varrations that influence the density in addition to




the above, an equation of state in the form

—- Q

P = p(pl T: <, cA- cB) (1.54)
must be added to the above equations,  and furthermore the
energy equation (1.37), a diffusion equation (simitar 1o
(1.51)) for salinity (a third constituent) must also compliement
the above ecquations in order to be able to solve the system.

in the above cases, note that the equations are coupled 10 each
other through variable density, which requires thear

simul taneous sotution.

1t 1s quite common that the mixture of interest is a weak
(ditute) solution of one of the constituents (say
CA<<°B)' Then by virtue of (1.41)

08%1.
¢ = Cp << 1, (1.55.a-¢)

(0 I constant,

s0 that the second equation (1.52.b) becomes irrelevant and the
conservation of mass for the dilute solution is expressed
by the single equation

acC

-3 2
~-— + ue¥c = DV=c + R
oz * v v

(1.56)

where R and D have replaced rA/R and

Dag respectively. In this case, the convective

diffusion equation (1.56) 18 decoupled from the remaining
equations, sb that the velocity field U = ui(x,t) is a
Known function obtained by solving the remaining equations.

Likewise, the influence of temperature and salinity on the
density of seawater can often be neglected when the gradients

of both properties are sufficiently small, To a good degree of
approximation, the ocean can be assumed incompressible and
homogeneous,'as a result of which the energy and salt diffusion-
equations are decoupled from the continuity and momentum
equations, Therefore, in principle, we first solve the
hydrodynamics from (1.4) and (1.18) to determine the velocity
field u(x,t). Consequently, for given velocity field, we

seek solutions to equation (1.56).




1.5 TURBULENT MOTIONS

The équations derived 1n the preceeding sections are generally
for taminar (orderly) flows of fluids. Most fluids become

turbulent (by the generation of chaotic motions) due to various
reasons, Turbulence in fluids may be generated as a result of

instabilities with respect to fluctuations deriving their -
enerqgy from the mean motion, waind stirring or mechanical
stirtang at the boundaries, otce, The motions 1n the upper

ocean are therefore commonly turbulent. The result is the
randem motion of fluid "particles”" consisting of lumps (eddies)
of various sizes, superposed on the mean motion (which exNMsts
~at a ltarger scale than the typical maximum eddy size). tt s
possible to derive the governing equations in the turbulent
state of the fluid corresponding to the previously described
conservation laws, through an averaging procedure. *However,
since the motions are random and chaotic, a full description of
turbulent flows is in the realm of statistics, which on the
other hand is strongly dependent on the structure and
generating mechanisms of the turbulence activity. In order to
overcome the difficulties posed by the often incomplete
knowledge and the poorly determined nature of the turbulence
statistics,; the statistical quantities are estimated through
simple empirical parameterizations (closure), '

in order 1o derive the turbulence equations, we proceed by
separating the flow variables into stowly varying and
fluctuating parts with respect to a time scale T, which s
assumed to be the upper timit of the turbulence time scales.
For the variables U and ¢ in equation (1.56) we can .

write

U= ulx, T 4+ Uik t) .
and (1.57.a,b)

c =c(x, T ') + ¢’ (x, t)

i

where the quantities with overhars dehote the long term (with
respect to T) averages, for example in the case of the
concentration

1 qT
c = - I ¢ dt ) (1.58)
| TJo

and the primed quantities denote the components with
fluctuations that are typically more rapid than the turbulence
time_scale T, It can be verified that (by definition)

¢ 2 g — & = @, (1.59)

The turbulence equations are then obtained by averaging the
respective equations over a time period T. Since the
conservat1on cquations grven n the eartier sectirons, namely
the continuity (1.4), momentum (1.18), energy (1.37) and
diffusion (1.56) equations are basically the same types (i.e,.
have the similar time derivative, convective, and diffusive
terms), the averaging procedure results in similar terms. It
will therefore suffice to average one of these equations, that
casc being the diffusion equation.
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It is obvious that, after averaging, the linear terms in the

equations will preserve their form in that they will be the
same differential terms operating on the mean quantities (since
the averages of the fluctuating parts vanish). On the other

hand, the nonlinear terms give rise to additional terms arising
due to the averaging of the products of fluctuating variables,

which 1n general do not vanish since the individual
fluctuations of the variables can be correlated (arising due to
the common cause of turbulence). These turbulent products

mainly originate from the nonlinear convective fluxes and
represent the turbulent fluxes, of buoyancy in the case of the
continuity equation (1.4) [although for homogeneous,
incompressible fluids, the linear equation (1.5) does not yield
such fluxes), of momentum (Reynolds’ stresses) in the case of
the momentum equation (1.18), and of heat or concentration in
the cases of the convective-diffusion equation (1.38 and 1.56).

Proceeding with the turbulent averaging of the diffusion
equation (1.56), we first put it in the flux form (i.e. a form
compatible with (1.50), making use of the continuity equation),
substitute (1.%57.a,b), and take averages:

= . = —
IS I Ve (G+c ) (Gru’) = DYE(C+c’) + R4R’

(1.60)

By making uge of the definitions (1.58) and (1.59), this
equation immediately reduces to

ac e — _ —
- 4 cu + ‘u’ = D ¢ + R
st vV LA v (1.61)

i.e. he eame'as equation (1.56) with the exception of the term

Vec'U’ arising due to the averaging of the nonlinear
convective terms in the preceeding equation,

AS we have noted above, the product c‘'U’ describes the
statistical correlation of the fluctuating components of
concentration and velocity, which are expected to be strongly
correltated in a turbulent field. Because of the practical
problems discussed above, these terms are often parameterized,
using empirical formulations. The form of this term in (1.61)
actually suggests that it may represent the divergence of a
flux in much the same way that the molecular flux divergence
appears itn (1.48.a). we can therefore define

———

ﬁT = pc’U” ' (1.62)

as the turbulent flux of the matter represented by the
concentration €.

One way to parameterize this flux i5 to make an analogy to
Fick’s Law, and adopt it for turbulent flows (Further
discussion of the mixing length theory on which the present
approx<imation »s based can be found in Schlichting (1968) ,

and Tennekes and Lumley (1972)). With this analogy, we relate
the turbuient fluxes to the local gradients of the mean
properties (in this case the mean concentration). For a

14
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turhulent fluid, the statistical properties of which we ¢can not
fully prescribe, it i1s imperative that we use a anisotropic
version of the analogy, i.e. ’ ;

— . ac
c'u’: = E; . ---
| i HJ o (1.63)
where i=1,2,3 are indices denvting the directions ‘I1n three

dimensional conrdinates X, and Eij the
turbulent diffusivity tensor,

In the sea, the smaliness of the vertical motions as compatred
to the horizontal motions and the fact that the depth of 1ihe
ocean 15 quite often smaller than the horizontal scales of
interest (i.e. the shallow water approximation) results in the
common situation that the vertical stratification is far
greater than that occurs n the horizontatl. Therefore, it is
reasonable to expect that the vertical coordinate coincides
with one of the principal axes, and the hor »zontal axes can
(by choice) be aligned with the remaining principal coord nates
of the diffusivity tensor Eij' which then reduces
(1.63) to the special form
N cu”’ E o

P i PE; axi

(1.64.2)

whetre Ei:Eii are the principal components of
the diffusivity tensor. writing in vector form this becomes

Np = pc’U’ = - p(LCe¥)T

3c ac . ac (1.64.D)
- p(Ey =T 4 Ey 2§ Ey - R)
X

where EX,E and EZ are the turbulent
diffusivities in the principglhcoordinates {(x,y,2z), for
which the unit vectors are (i,Ja,K).

The vertical stratification in the sea (e.g. near the
thermoctltine) has an inhibiting infltuence on vertical motiyoi
(including the vertical components of turbulent fluctuation
velocities w’), hence on the vertical turbulent flux

pc'w’, so that typically we expect

EX,Ey >> Ez.' On the other hand, in the

surface mixed layer, vertical mixing is very efficient due to
wind stirring and therefore i1t can be assumed reasonably that

EZ > EX.E . Iin open sea conditions it
1S natural to approximate EX:E :EH,
i.e, horizontally isotropic turbulent diffusion. It has been

remarked earlier that the x and y coordinates are assumed to
coincide with the principal axes since the horizontal axes can
be rotated to align with these axes without 1oss of generality.,
Near a coastal boundary it is often found that the offshore
component of diffusivity is more important than the alongshore
component Ex>>E (with ¥y axis aligned with the

coast)., In the general case when the referenced coordinates do
not coincide with the principal axes, the general non-isotropic
form (1.63) must be used.
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turbultent fluid, the statistical properties of which we c¢can not

fully prescribe, it i1s imperative that we use a anisotropic
version of the analogy, i.e. ' :
- e ¢
c‘u’. = e
‘ ’ '4oax, (1.63)
where 1=1,2,3 are indices denoting the directions ''n three
dimensional coordinates X,, and EiJ the

turbulent dirffusirvity tensor.,

In the sea, the smaliness of the vertical motions as compared
10 the horizontal mot,ons and the fact that the depth of 1the
ocean 1s quite often smaller than the horizontal scales of
interest (i.e. the shallow water approximation) results in the
common situation that the vertical stratification is far
greater than that occurs 1n the horirzontal. Therefore, it i8
reasonable to expect that the vertical coordinate coincides
with one of the principal axes, and the hor »zontal axes can
(by choice) be aligned with the remaining principal coord nates
of the diffusivity tensor EiJ' which then reduces
(1.63) to the special form -

—— ac
N. = pc‘u’. = - pE. ---

i i to3x.
! (1.64, a)

whete E-:Eii are the principal components of
the diffusivity tensor. writing in vector form this becomes

Np = pec’li’ = - p(LCe¥IC
- aC A . ac A e ¢ &) (1.64.D)
z - ) -— & + - ¢ .
P ax Y ay Z 3z

where EX.E and EZ are the turbulent
diffusivities in the principglhcoordinates (X,¥,2), for
which the unit vectors are (i,J.Q).

The vertical stratification in the sea (e.g. near the
thermocline) has an inhibiting influence on vertical motion
(including the vertical components of turbulent fluctuation
velocities w’), hence on the vertical turbulent fiux
pCc’'w’, so that typically we expect
Ex'Ey > EZ.’ On the other hand, in the
surface mixed layer, vertical mixing is very efficient due to
wind stirring and therefore 1t can be assumed reasonably that
E, »> EgE,. In open sea conditions it
isS natural to approximate EX:E :EH.
i.e. horizontally isotropic turbulent diffusion, tt has been
remarked earlier that the x and y coordinates are assumed to
coincide with the principal axes since the horizontal axes can
be rotated to align with these axes without 1088 of generality,
Near a coastal boundary it is often found that the offshore
component of diffusivity is more important than the alongshore
caomponent Ex>>E (with y axis aligned with the
coast). In the general case when the referenced coordinates do
not coincide with the principal axes, the general non-isotropic
form (1.63) must be used.
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(1.68) may not often he appropriate. This is a consequence of
the probabilty distribution of different length and time scales
embodied in the turbulence field. At initial stages of the
spreading, the material will be redistributed mainiy by small
Scale eddies, and therefore diffuse at a relatively slower
rate. On the other hand, as the patch size grows, larger
eddies will begin to influence it, and distribute the material
in a more efficient way. It is therefore reasonable to expect
that the diffusivitly increases with time or proportionally with
the size of the cloud.

In addition, due to the random nature of the process, each
realization of the ensemble will appear in an irregular form
and will be different from other possible realizations as shown
in Fig.s 1.1.a,b. The irregularities are only smoothed out if
take the ensemble average of the process with respect to fixed
coordinates and at the same time intervals after the release,;
‘then the constant concentration surfaces will be circular as
shown in Fig. 1.1.¢c (i.e. if the medium is isotropic). on the
other hand, the center of mass of the diffusing cloud of each
reatization may be shifted random!y with respect to the
ensemble mean center of mass, due to the influence of eddies
that are larger than the ctltoud size (meander:+ng) as shown

in the first two figures, If the ensemble averages were ~o be
taken by shifting the origin to the instantaneous center of
mass of each realization, then the average cloud would 100K
smaller than that in fixed coordinates as shown in Fig.1.1.d,
for then we extract the influence of meandering (Fischer ot
al., 1979), Note that in fact, during the initial stages of
development, diffusion by small scale eddies, and advection by
large scale eddies are inceparable, making the definition of
turbulent diffusion somewhat arbitrary.

FIGURE 1.1 Turbulent diffusion from a small source. (a,b)
Random spread.of two identical clouds, (c¢) Spread of the
ensemble mean, (d) Spred of the ensemble mean obtained by
shifting the origin to the centeroid of each realization.
(After Fischer et a/.,1939).
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The apparent diffusion is that corresponding to Fig. 1.1.¢,
and we should in principle use the apparent turbuilent

diffusivity in the turbulent diffusion equation. Oon the other \
hand, it is more convenient to obtain the relative '
diffusivity through experiments, i.e. that corresponding 7o

Fig. t.1.d, since individual clouds can be averaged
irrespective of their relative positions,

A good measure of the spreading of a cloud can be obtained by
calculating its variance (i.e. the normalized second moment of
the concentration distribution), defined as

5] - +00
I ¢ ds (1.69)

where ¢ is the ensemble mean concentration and s stands for
any of the coordinates (x,y,z) measured from the centroid
of the cloud, and therefore o,, O,,

o, are in essence the lenth scales (standard

déviations) of the diffusing cloud. It can be verifjed,
through multiplication of equation (1.65) with x2, y2,

22 Pesp?CFiVEIY and through integration by parts that

2
: do
Eg & = ~=%- : (1.70)
at
for each of the coordinates 8 =- X,yY,Z, i.e., the turbutlent

diffusivities are proportional to the rate of spreading.

The transformation between the ensemble mean yalues in fixed
coordinates and those obtained by coinciding the centroids of
different reatlizations is then obtained from (Csanady, 1973)

2 A2 red

9" = % 8 (1.71)

+ m
where 8 refers to the coordinates with respect to the
centroid in each relization and ms2 represents the
variance due to the meandering.

For sufficiently long time after the injection (i.e. after the
scale of diffusion becomes larger than the largest eddy Ssizes)
ms8 becomes constant, Sso that it does not ,
contribute to the diffusivities in (1.70). The time required.
for this to happen is typically the Lagrangian time scale
(Fischer et' al., 1979).

For time larger than the Lagrangian time scale, the
diffusivities are constant (i.e. the variance increases
linearly with time in 1.70), and the soiutijon of (1.65) with
constant coefficients is appropriate in this case.. On tne
other hand, for initial time after the release of a small
patch, this approach is not valid as demonstrated above, for
then the diffusion is proportional to eddy sizes. Fischer et
al. (1979) show that in this case the FicKian diffusion
equation (1.65) is valid with respect to relative coordinates.
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shifted to the instuantaneous center of mass of the cloud,
provided that the diffusivities are prescribed as

2
1 do
R A Y

2 dt ) (1.72)

This "4/3 Law"” has experimentally been shown (OKubo, 1974)
1o apply to a wide range of diffusion problems (see Fig. t.2);

it simply states that the diffusivity increases as a power of
the cloud size, '

variations to the thoery arising due to the consideration of
eddy sizes, their stochastic bases and relation to statistical
theory are discussed and interpreted with considerably more
latitude in Csanady (1973) and Fischer et al/. (1979), which

are some of the best references among the various literature on
the subject.

In the following sections, we will mainly consider the cases in
which the diffusivities are assumed to be constant. The
corresponding solutions, consitdering eddy diffusivity

| varvations at initial <tages of diffusion have also been

51 ihvestigated by a number of authors and can be found in various

1 expedient books on the subject.

9
10 T T T T T T
/
./
loa e ./,/ —
107 a = 0.0l cmus/sec 7,7

DIFFUSION COEFFICIENT, E (cm?/sec)

SIZE OF CLOUD, 30" (cm)

FIGURE 1.2 The turbulent diffusion coefficient as a
function of patch size (After OKUbO,j974).
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2. SIMPLE MODELS OF TURBULENT DIFFUSION AND
TRANSPORT »

In this Seétion. the convective diffusion equation developed
above will be solved under different initial and boundary
conditions corresponding to typical simple situations that may
be encountered in the environment. Although the real processes
in the ocean can be more -complex mainly due to the physical '
prescription of the yet undetermined turbulent diffusivily
coefficients, these simple solutions will serve to illustrate
the basic mechanics of diffusion, These classical soluticns
can be found in a number of basic references, including Csanady
(1973) and Harleman (1970). They have also been developec

in conjunction with the familiar heat diffusion problems.

Even with the Fickian flux and other approximations involved in
the derivations, equation (1.68) is in general not very easy 1o
solve under general flow situations, often due to the variable
coefficients introduced by the velocity field u. For a

given flow situation, the velocity field u(x,t} is

obtained by solving the equations of motion governing the
hydrodynamics, and then a solution to (1.68) is seeked by N
substituting these variable coefficients in the turbulent
diffusion equation. An alternative approach is to lump the
variability of the velocity field into the turbuient
diffusivity coefficients which already involve a number of
simplifications in parameterizing the turbulence. As to be
shown later (Section 3), this is the essence of d/spersion
formulations (as opposed to diffusion), which are based on such
an incorporation of the velocity gradients into the modified
diffusive terms.

when the fluid is at rest, the convective diffusion equation
reduces to the form representing diffusion in a solid such as
that occurs for heat conduction in solids. in this case, the
form of the equation remains the same irrespective of the
magnitude of the diffusivities; and the equation for molecuiar
diffusion (1.56) can in fact be recovered by tletting '
EX:EY:EZ:D in equation (1.68).

we set out to investigate a simple class of problems in which
the velocity field is uniform (constant) with speed U _
arpbitrarily selected to be aligned with the x-axis. This case
is equivalent to the diffusion in a solid (except that the
diffusivities can now be linked to turbulence) with the
implication that the whole process is viewed by an observer
fixed with respect to the uniform bodily motion of the fluid
(as will be shown briefly, this difference can in fact be
accounted for with a suitabie transformation of coordinates).
in addirtion, we will assume homogeneous, non-isotropic
turbulence and a non-conservative constituent which decays
linearly, Namely, we consider the equation

99 + U 2G = aac + E aac + E aac K¢
at  ax X ax® Y ayl Z 3z :

(2.1)




This equation can be put in a
appropﬁiatc transformations,
transformatjons

much

E E
X = (—)yV2(x-ut), v = (é—)'/ay.

simpler
we defaine

form by
the coordinate

3
z = fz-) "/,

Ex y 57
T = t, (.2.0 d)
So that the total advective rate of change. {(left hand sirde of
2.1) becomes
ac ac _ X adc¢ aT c) (ax ac a1 dc
at ax ot 48X at aT ot ax It AT
E ac c E ac
S G S B Ve s WS VT f €= I V4
_ Ex aX T Ex aX
j o (2.3)
= aT, o .
and the terms on the right hand side are transformed n a
simy1ar way as given for the first term below
3%c 3X 3 3X adc aX , ac
Ex zoa = Eyx == —= (z= =-) = Ex (:-)8 --4
IxX“ IxX dX ax 9IX ax ax
3¢ (2. 4)
= —_— .
ax?e
in equations (2.2.a-¢) E was an unknown constant, which we now
et equal to
-3
E = Ex Ey EZ (2.5)
1.€. one of the /nvariants of the anisotropiy drffusivity

tensor, With these transformations we

(2.1) 1n the following form:
o¢ o % afc o
at ' lax2 T av2 T 322
we further make the transformatsaen
¢ = ¢ e KT
upaon which (2.6) 15 replaced by
3¢ 3%e  3%¢ 3%
a1~ = ax2 ' a2 * 5z2)
This form of the equation n

transformed variabiles

then wraite equation

(2.6)

(2.7)

(2.8)
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equivalent to the diffusion equation for a conservative
substance in an isotropic field at rest. On the other hand,
this equation is the familiar heat equation equivalently
modelling heat conduction in an isotropic solid, for which the
classical theory provides various solutions (e.g. Carslaw and
Jaeger, 1959). We can in principile develop these classical
solutions for (2.8), and back transform them by substituting
(2.2.a-d), (2.%) and (2.7) to obtain solutions for (2.1).

we next consider the basic solution to the diffusion equaiion
for a point source initial condition, and show how other
solutions are developed from this basic solution.

2.1 THE BASIC SOLUTION TO DIFFUSION EQUATION
(INSTANTANEOUS POINT SOURCE)

Consider the simple diffusion equation (isotropic conservative
diffusion, stationary fluid) : '

acC
-2 - E ¥%c¢ . © o (2.9)
at

we want to investigate the simple symmetric diffusion pattern
in the case of an instantaneous point source, i.e. of some
material injected at the point x = X’ = (x*,y’,2°)

released at some initial instant t = 0. We seek the

solution to (2.9) with the initial condition

c(x,0)

M
; d(x-x*) d(y-y') 8(z-2°)
(2.10)
M
= - d(x-x")
P

where M is the total mass of the substance introduced and

p is the density of the mixture, which for all

practical purposes can be taken as the density of the receiving
fluid. Here &(x-x’) is the Dirac delta "function”

with the important properties of

At oo
S(x) dx =1
3 :
n+ 00
F(X’)d(x-x’)dx = F(Xx) (2.11.a8-¢)
¢ -o0
n+ 00 .
e'KX gk = 2w 6(x) .

v —-o0

The delta function was introduced by the well Known physicist
Dirac .in 1926, but it was later shown by Schwartz ih 1950 not
to bé a "funhction®", but rather a generalized function or
functional, i.e. a set of functions which in some 1imiting
case approach zero everywhere except at the relative origin
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FIGURE 2.1 f,(x)=tawr) /2 expr-(x)2/a), the
set of functions which reduce to the delta function as a-0.

X=x’, where its value becomes infinite. we can visualize a
set of functions which monotonously decay away from the
relfative origin, such as in the case of the set constructed
from FfalX) = (om)‘i/2 exp[-(k—x'lala] with

varying values of a, as shown in Fig. 2.1. As «

— 0, the peak at xX=x’ becomes narrower and increases in
height, approaching 8(x-x’) in the timit..

The first property (2.11.a) of the delta function requires that
the area under its curve be unity, the second (2.11.b) requires
that its integral product with another function evaluates to
the value of that function at the relative origin. The third

property (2.11.¢) states that it is the Fourier transform of
unity.

If we integrate (2.10) in an infinite volume Yoo
€nclosing the instantaneous source, we obtain from (2.11.3)

+ 00
f pC(X.O)dV:HJIfd(X—X’)d(Y—Y’)d(Z—Z')dXdeZ:H
voo . E
~00 (2.12)

yielding the mass of the substance introduced, in agreement
with the definition of concentration (1.40, a).,

Since the source is located 'yt an infinitely small point, the
solution to (2.9) is expected to be radially symmetric.
Writing (2.9) in the spherical coordinates (r, 0, ¢)

centered at the relative origin of the source and dropping the
azimuthal and zonal terms (due to radial symmetry), the
equation is

9c 1 a3 ) ac
_Z E -5 re -2, (2.13)

ot r- ar ar
where ra i (x—x')2+(y—y')a+(z—z')a. The
soltution to (2.13) with the initial! condition (2.10) can be
obtained through various techniques, including Laplace
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transforms (Carslaw and Jaeger, 1959), or similarity transforms
as will be presented here., We assume the soelution is self- \
simitar with the form

¢c =™ p(n) (2.14) -
in the transformed coordinates
e
g ==y = 4EL . 2.15)
" T et ¢ L

The transformation to the original variables are

~ 1/2 _
r\ L L} - ]
,(n;) ) t £/14¢E) (2.16.a8,b0)
and the corresponding cross-derivatives aré
» .
al v r
T G amEc e
-- = 0 , on Ry — e & P 1 — 2(?)‘/2.
ar ar ~ 4Et r 4
The inqiv}dual terms in (1.85) are then calculated as
ac ac at aCc In
at af adt ad at
: et (2.18)
= - YEL (nfﬂ + mf)
and
L e B R
(2.19)

- o i) -m O
4 q 1/2; 3/ ~_ ‘n3/2;1/2; m -2
an on

3
-m-1 =
41 (Nfpn + 5 Ty)
where subscripts denote differentiation with respect to the

'transforme¢ variable 1.

With these substitutions we transform the partial differential
equation (K.BS) into the ordinary differential equation

' 3 .
f fa) + (= + mf) = O
N Tan * Tl L5 T r ) (2.20)

This equation is of second order, and general solutions can be
obtained in series expansions, However, it is8 obvious that we
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can only obtain a similarity sotlution if we select the yet
undetermined exponent in (2.14) as m=3/2. Then, by tetting

(1.92) becomes

3
+ - = 0 , 2.22
nag+ ;9 ( )

which directly integrates to
g9 - An 372 (2.23)
or

fy t f = An-3/2

(2.24)

This last equation can be reintegrated with use of integration
factors as follows ’

f =Be M4 Ae N f n—3/2 eM dan,
(2.25)

where the first term represents the homogeneous solution and

the second term is the particular solution.

lnspedting this solution for small values of

N =r~/(4E1) (i.e. as t — o), it can

be seen that the particutlar solution étne second term) is

a 9rowing solutiaon with a trend of n~ /2 or

t3 2. Since the initial concentration should decay

with time through diffusion in the medium, this solution can
not be accepted and therefore we set A = O. The remaining

solution is
¢ 2 | ( re) (2.26)
P T —mee—aom @XP (- --- .
(aLty 372 % 4

The constant B can be evaluated from the initial condition
(2.10). In spherical coordinates we have

- = J J ¢(r) dr r do rsindé de
(]

0 Jolo
n 00
= 4w r® c(r) ar
Jo
> fin) 1t [ .,
= 4w | nr -- - (21172 an
Jo £372 2 'q

(2.27)
f(n) nl/2 gy




. "”
= 2uB ni/2 e M gy

L.}

= "3/2 B

Therefore the sotution of the problem becomes

: ; Fed
(M/p) r
c(r\'t T e - - ex — - - 2-28
Dt lamEr)372 OPLT Gey! ‘ :

or wrating vir Cartesian ¢oordinates

(2.29)

The instantareous point source solution (2.28) decays as
17372 anq goss to zero ewerywhere as t —+ o, Al
any fixed tine the solution decays away from the relative
origin as exn»(-ar€) (i.e. the spatial distribution i8s
Gaussian) . In fact, the behaviour of the solution can be
visualized with the help of Fig. 2.t1, replacing a =
4Et. The shape of the function with respect to the radia
distance measured from the source (instead of x in Fig. 2 ) i8
the same for ang given time, although the time rate of decrease
faster (as t~3/2) than that would correspond to Fig.
2.1 (this time dependence is a result of the three-
dimensionality of the problem). At any time, the constan-
concentration surfaces (of Say c:co) are spheres, a cross
section of which. is shown in Fig. 2.2.a. The volume enclosed
by ¢=c¢, i3 : . ‘

” aw (4Et)3/2 in372 (Smax

o~ 3
3 Co (2.30)
where cpa. iS the concentration value at the center of

the diffusing cloud.
The solution in the non-isotropic non-conservative, uniform

flow case can be obtained by simply making use of (2.2.a-d),
(2.5) and (2.7) as

- -

FIGURE 2.2 Diffusion from a point cource (a) isotropic
(b) anisotropic cacc. .. . r=2pect to relative coordinates,
(¢) with respect ta fiv, ~dinates.
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_M/p [(x-x'—ut)‘?*(y-y')a{(2*2')3
c:—.,-.. ‘ 3/2_ lep,_ — e - - & -
ALt 4kt ag._t
(4vwEt) X y (2.31)
where E3:EXEYEZ. In this
constant concentration
to the shifted coordin

Case, the

surfaces are ellipsoids, With resrect

ates the pattern lookKs like in Fig.
2.2.b, while it i8S as shown in Fig. 2.2.¢c seen by a fixed
observer, )
The variance (cf. equation 1.69) defined wWilh respect to the
center of the pPatch is
+o00 - -
' f c g2 das
- 00
032 b R P,
j+m - (2. 32)
Cc ds
- 00

ghere 5 standg for any of the shifted coordinates

X=X-X"-Ut or Y=y-y’ or Z=2-2Z2’ in equation

(2.31), Noting that
[too -

J Cop2 exp(—ra/a)
~ 00

- £ - aye 2.33
s 5 (wa)i72 d ( .
f exp(-r2/a)

00

(2.32) €valuates to (for each axis)

Ox = (2E,t)1/2,

- 1/2
oy = (2E,1)1/2,
0, = (2E,1)1/2

(2.34.a-c¢)
in the case of the instantaneous FPOINt so

urce solution (2.31),
If the medium 1S isotropic, the spread

1S obviously Symmetric
Note that
in agreement with €quation (1.,70).

in all directions with o - (2ev) 1/2
these results are
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2.2 CONSTRUCTION OF ELEMENTARY SOLUTIONS FROM THE 3
BASIC SOLUTION \

We can construct other elementary solutions from the basic
solution obtained above, through convolution operations.
For example consider the case of an initial concentration
distribution C(X) at t=0

c(X,0) = C(x) = C(X,¥,2Z) . (2.35)
Consider the simple diffusion equation (2.9) written as
L(c) = O ' (2.36)

where X represents the diffusion operator

z = 2. - gv2 '
T oAt ' . (2.37)

Let ¢(x’,t) be the basic solution of (2.33) (or 2.9) for
an instantaneous point source c{x,0)=8(X-%X")d(y-y’)
8(z-2’) disregarding the dimensional coefficient

M/p in (2.10). The solution to (2.36) with the initial
condition (2.35%) is constructed as

+o00
c(x,t) = III C(X’) ©(x-x’,t) dx’dy’dz’
- 00

(2.38)
where E 15 (2.29) normalised with M/p. The proof
18 given as folliows. Operating on (2.35) yields
+ 00
z = 'y x(¢ ' dy’ dz’ = O
(el JII BpxT) () ar” dy (2.39)
— 00

since ¥ operates on x and t onty and E satisfies
(2.36). Evaluating (2.38) at t=0, we obtain from (2.10)

+00
- ’ —w? s F v - C
c{x,0) = JII C(Xx’) 8(x-x*) dx’ dy’ dz (x{2.40)
- o0

by virtue of (2.11.b). The expression in (2.39) is therefore
proved to be the solution. The method can be applied to
arbitrary initial conditions, examplies of which are given
below. ' )

2. 3 TNSTANTANEOUS LINE SOURCE

The concept of using the basic¢c solution to construct other
solutions is applied to the diffusion from an instantaneous
l'ine source with the initial condition .

)
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.O: ’ S(X-X") S(y-y"
c(x,0) (m*/p) S(x-x") S(y-y") (2.41)

i.e. a point source in two-dimensions, located at x=(x",y")
with mass m”’, Comparing with (2.10), the source strength
m’ is defined according to

-m' = M 8(z-27),

t+ 0o
I m’ dz = M,

(2.42.a-c¢)

m’ dz = dM,

cuch that my is distributed along the z-axis, with its
total influence Cnntclkually equalling M. Applying (2.38)
we obtain

~2 : .

________ - - d » _ - ”n d » » F]

c(x,t) JIJ p(quttf” ( ) (X"-x")é(y’-y")dx’dy qz
(2.43.a)

where ré - (x—x')a+(y—y'12+(z—z')2.
Using (2.11.b) this is reduced to

( - J+m m’ ( ?2) 4
c(X, = s exp -(--- z’
R w pl4wEL)3/2 4E1t
(2.43.b)
where r¢ = (x—x")2+(y-y")2+(z—z')a.
Integrating further yields the two-dimensional solution
’ 2 Fed
m A (X-X")C+(y-y"™)
c(xX,t) = ----- ERP= | =i = = mimies & Smm s = } 2.44
) PATEL B AEt d .
The salution in the more general ¢ase (anisotropic, linear

decay and uniform current) is easily obtained through the
substitutions (2.2.a-d), (2.5%) and (2.7).

An alternative interpretation of the convolution method rests
in equations (2.40) and (2.39.b). we are equivalently summing
up the influences of a sequence of point sources with strengths

dM along the z-axis, to obtain the line souce solution,

Note that the instantaneous line source solution decays as

t ag t —» o0, at a slower rate compared to the

point source sotlution. At any fixed time the spatial decay of

the solution is again Gaussiahn, At any instant isolines of
constant concentration c, are circles (ellipses in the
anisotropic casze) encltosing an area of

A. = (AWEt) 1In(c

(4] max/co) (2.45)
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The diffusivity E therefore measures the rate of increase \%
of the influenced region.

A better measure of the spread in each direction s obtained
from (2.32) yielding

. " 1/2
= = (2Et
Ox T Oy = (BEU) (2.46)

i.e. the same as in the case of the point source solution

It is worth remarking at this point that (2.44) could also be
obtained by directly solving the two-dimensional equivalent of
the diffusion equation (2.9), and using the similarity
techniques of Section 2.1.

2. 4 INSTANTANEOUS PLANE SOURCE

we next consider an instantaneous plane source

c(x,0) = (M"/p) S(x-x"")

(2.47)
where m” fepresents the SOUPCC Strength
m* = m’ S(y-y"),
(2.48.a,Db)
m® dy dz = m’ dz = M
in comparison to (2.38) and (2.10). The golution can again be
obtained by the game technique outlined in Section 2.2 as
+00 - }
c(x,t) = III m’ exp- ( ra) S(x*-x"’) ax’ dy’ dz’
Pl pluwEL) 372 AEt
« (2.49.a)
wnere r2 = (x-x’)2 + (y-y')& + (z-z") 2.
Then we have
+ 00
c(x,t) = Ij m’ exp -( ga) dy’ dz°’
A prawEt) 372 AEL
' T (2.49.D)

where ?2 = (x—x"')a + (y-y')a + (z-z')a
and makKingiyuse of (2.43) and (2.47) this reduces to

- 400 - . ) —x-’ 2’ _ » 2
c(x,t) = j ——T—— exp-(£§____1__iz_!_!_) dy’
00

(2.49.¢)

from which the solution is obtained as




"l" (xA_x.l)z
C(X.t) B e s oes se e exp — ]
' (2.50)

It can be noted from (2.49.¢) that the one dimensional solution
(2.5Q) is a summation of the two dimensional solutions (i.e.
line sources along the y-axis. In this case, the solution
decays as t"1/ at large times, 1.e. slower than the

two and three dimensional instantenous sources. The variance

for the solution 19 aAgain axr(?rt)‘ <,

2.5 CONTINUOUS POINT SOURCE

we can use the methods outlined above, for constructing
solutions for continuous sources i.e. sources from which a
substance is ingjected continuously, eirther for a certain period
or for an infinite time,. The construction technique of Section
2.2 is applicablie in these caves, except that we must now
define delta function 1nputs with respect 0 time and must sum
their influences, However, note that since the time t

appears in more than one term 'n the general (non-isotropic,
non-conservative moving ftuid) basic solution (2.31), we can no
ltonger do the summation on the simplest case of (2.29) and
consequently back transform the variables, Instead, we must do
the summation directly on the general case (2.31). This will
be better understood through the following example,

Consider the continuoeus pornt source, in which a substance
is injected continuously, starting from an initial time
t:to up to time 1:11, (Fig. 2.3) with a rate of

mass injection

dM
qQ = —-—- ., (2.51)
dt
wWe idealize the sittuation as o summatron of an infinite number
of point sources progressing in time, each with a mass
injection of dM per unit time increment dr. we
assume that the source is located at the or gin xzy=z=0 for
brevity. Then, the solution c¢can be constructed as

A
i =
it ldm it
¢ "
] ! '
T [ .
L 1 -~ ) t
1y i

! : ) '
[ F

L CAEAN >£

% ta 4

FlGUREl2.3 tdeatization of the continuous point source as a
series of instantaneous point sources.
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le te

Cc = I . ci(x.t-T) daM = j q ci(x.t—f) dT : \\
La bl (2.52)

where ¢, denotes the solution for the instateneous

sotution (i.é€. equation 2.29) divided by M, and t,

tnhe upper limit of integration in time. |f we are interested

the time interval t,<tcty
we must integrate (2.52) up

interested in

.in the solution for
(during continuous injection),
On the other hand, if we are

to t,=t.
t>ty (i.e. after the continuous source is stopped)
equation (2.52) must be integrated up to t,=t,.
Defining *
2_Bx,2 2_Ex,2 3_
A —Esy . -ézz , ES:zELE E; ,
o (2.53)

and substituting (2.31) and (2.51), the solution (2.52) i¢

wr-itten as
2

q exp ar
gy P 372€%XP~ 7777, ECt-my
: AEx } (2.54)

Mote that a continuous point source wilh varying injectior rate
q(t) can ailso pe taken into account by takKing qQ=-q(t-T)
in this equation. with the following definitions of

~

2 2122 02 - e
rc - xC+AE+p-, L  mo~imsHE-T 372
2[E (t-T
. _ [Ex(t-T)] (2.55.a-¢€)
v = XU/(2Ey), Q@ = (u2+ake,) /8, !
B=rQ/{4Ey,
equation (2.54) can alternative\y pe written as
v ;' BE
C=--- g‘g——7372; J exp—[;a + ga] dg
fo (2.56)

“2pwd72(EE,)

where [ =L(T=t,) and £,=0(T=t, ).
Note that in the case t,=t (i.€.

L,=

t<ty),

integrate (2.56) we define
8 8

p =-L + -, q=2t : (2.57.a,b)
L N 4

and consequently

In order to




p? - 2 - B P -q (2.57.c,d)

Differentiating (2.57.a,b) gives

ap P 6 2q
ac T % T g7 T 2T ple
(2.58.3a,b)
aq ' 2
aq =2 - 9 =1 - 92 = -8_,
at 9 L p+q

and therefore

P dp = q dq . (2.59)

The integrand in (2.56) can be formed into

g2
2
J exp -(LS + Ea) ag
' (2. 60)

i 2 . 2
= 3 [exp(-pc+2B)+exp(-qQ--28)] df

and the integral c¢an ther “fare be expressed alternatively.
using (2.58.a,b)

1 8] 2 ' T q 2
‘ (-+1)exp(-p=+2B) dp + - (-t+1)exp(-q~+2B) dq
i q 4 P

| (2.61)
which, with tne heip of (2.59) and (2.57.c¢) becomes

1 5 1 >

2 | exp(-pS+2B) dp + - | exp(-q°-2B) dq

' (2.62)
A3 a resuit, the scviution (2.56) becomes
v
qe : Py - q

Co=—=-o—o-- v7e-1e*2Bersc p)l °+e2Bertc q)| ©)

8wp(EyEx) V/2p P, s 13659

where evaluations are between the limits Po=P(Ly ),
qQp=a(Ly) P,=P(L,), q,=q(L,).

Note that the transient scolution (2.63) in the special case
UzKkK=0 (B8=0) becomes

r e
B mmen o ey o= PG e e e terfC-——r--m—e-u— |
4wp(EyEz)?r 2lEx(t-to) ] 2IEx(t-tx)]

(2.64. a)




\ erf x

FIGURE 2.4 Error function and complementary error function.

and if t,=0, t,=t, simplifies to

0
C = —--==-= .- erfcl=---:T
T Amp(ELEL) V72p 2 (E.t) 172
P( y ) (Ex ) (2.64.D)
in the QDOVE, the error fUﬂCtiOﬁ i8S defined as .
.' 2 u
ertf u = 5172 J exp ’52 ds
0 (2.65.a)
and the complementary error fUﬁthOﬂ as
erfc u = 1 - erf u (2.65.D)

which are sketched in Fig. 2.4.

when considering instantaneous SOurces, we have noted that we
could not have any steady solutions, since in these cases We
had c-+0 as t=sw. In the case of continuous

injection, it is possible to have a steady solution, which i8S
obtained by letting t,=t, Lo in (2.50). The

lower 1imit of the integral (corresponding to T=t,)

becomes [, =0 and the upper timit [ oo ‘

in this .case, and a definite integral results, yielding the
.gteady state solution

q
* praiEEy 172 OXP TR (2- 6027
\

Consider the case K=0, then (2.66.a) becomes
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FIGURE 2.5 Solution for a continuous point source(n{RVCSQnaaj.‘9?3L

uir '
C = —m--m-peo exp -[--——— ] (2.66.b)

These colutirons are shown in Fig 2.5, At long distances away
from the origin along the x-axis, i.e. for X>SA and
X>>u, we can simplify (2.53.3,b) and (2.55.a) to

Aa’,ua 1 A24p2
N T IR S € B S i R YV i o
X 2 X
(2.67)
50 that (2.66.b) can be expuecced as
q U y2 z2
C = —mm - —— 1722 exp - [--(-- + --)1} (2.68)
pQV(EyEZ) X 4% Ey‘ Ez

.e. the distribution becomes two dimensional at large x.

At large distances along the =-a=1s the solution has boundary
layer 'structure, with diffusion occuring transverse to the
flow, and negligible diffusion along X. A particle released at

the origin is swept to any point x in a time duration of
t=x/U; which upon substitution into (2.68) yields the
familiar (two dimengional) instantaneous line source solution
(2.44) with m’Uzq, t=t, in this case the line source

heing oriented along x. It can be verified that this is
équivalent to the solution of the system

ac acc acc

=<z E, -5 + E, --4
Ax Y ay© Z 3.%

(2.69)

i.e. the steady 2-D convective diffusion eqration equivalent to
the Time dependent case with t=x/U, and the diffusivity

along thé X-axis being neglected (the boundeary layer
approsimation),

2. 5 CONTINUOUS LINE SOQOURCE

Salutions for the case of a continuous line source alignec
with The‘Z-JXIS (4t X=0, y=0) with a time rate of injecticn




am’
Q' = ---
ar

(2.70)

can be obtained either by summation of continuous point Soutrce
solutions in space or the summation of instantaneous line
source solutions in time, The latter yields an integral form
in anology to (2.48) and with the definitions

E
r&=x24)2, Aezéxya, =07 (t-T)
y T (2.71.a-¢)

and v, Q, B as defined in (2.55.c-e), the solution is

written as (Harleman, 1970)
raV [ el
e 1 B
= - 9———173 f ° - exp “Lero-) de
£e € (2.72)

where gozg(T:to) and g,=€(T=1t_).
Note that in the case t,=t, g,=0.

The steady state solution 18 obtaineg by letting to—*m.
In the case t,=t, this i$

2wp(EE) (2.73)

whete Ko is the modified Bessel function of the second
Kind and order zero. For large values of r (i.e.
B>>1/2) we can approximate (2.73) as

(2. 74)

2.7 CONTINUOUS PLANE SOURCE

Consider a continuous plane source (an assemb?age of continuous
line sources or instantaneous plane sources) in the y-Z plane

poeitioned at the origin x=0. Let the strength of the source

be .
qn = 7, (2.75)

dt

In analogy with the previous Section, the solution is obtained

as
te n - - 2
€ = J‘ 5 S 5 9 ______ exp‘_!§_9!1’_!!l + K(t"T)] darT
to PLATWE (t-T)) SE, (1-T) (2.76)

or defining
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t-T
ro=ox, y = @ (---)1/2

4E
e ' (2.77.a,b)
and y, Q, B as 1n (2.%%.c-¢) we can wrate
= o 0 exp -[y® ¢ ;g] ay
ye (2.78)
or an anatogy with (2.63) av.
eV Po D
= ----lexp(+2B)(erfc p) texp(-2B)(erfc q) ]
2pQ P, ]
) (2.79)

whet e Pi3,P;:95:Py,.qy are defined the same
way as in (2.57.a,b) replacing £ by y.

2.8 INFLUENCE OF FINITE SOURCE DIMENSIONS

The influence of finite source dimensions can in Praincaiple be

accounted for through the superposition techniques outlined

above., " As an example, we will only consider the case of a
finite fength instantaneous 1ine source confined in -h<z<h
and n the x-y plane (at x’=0, y’':=0). For brevity, we consider
the isotropi¢c, conservative non-convective case. In this case
the solution (1.115) is modified accordingly, to
jrn m° pa g .
¢c = | @ ---- -~-a2n EXp - --- dz° .
-n elawetr)3/2 AEt
where ?2:x3+y2+(2~2')3. Making the

supstitutions

w(z°) = -=-=- daz’' = -(4et)'/2 qgu
(2.81.a,b)
vyields the solution

mo . x24y2 ph{-N) 5
¢ T ewd2agy P T Tl f exp T un
wi+h) (2.81.¢)
: xafy2 Z+h -n
" spwer O Tape” 1OTF ey 72 T eMT (Geyy 172

ag the solutian, Note that the solution 18 symmetric about
0, since erf(-r)zerf(+r).

Other solutions for finite sources of different geometry and
time dependence can likewise be obtained through the techniq

2
“~
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outlined so far,.

2.9 INFLUENCE OF BOUNDARIES

On impervious boundaries the flux must vanish normal to the
boundary surface,

feVc = O (2.82)

A .
where n in the unit normal to such a surface.

In some simple cases, it i8 possible to regard this situation
of vanishing gradient at a boundary through superposing mirror
images with respect to the boundatry of the otherwise unbounded
solutions. To itlustrate this method consider an .instantaneous
point source positioned at y’=z’=0 and x=L where X is

measured perpendicular to a boundary at x=0 and in the y,z
plane. The solution 8

(2.83)

where the second term 'is due to an image at x=-L. Notle

that the solution is symmetric with respect to x=z0 and if the
source is8 close to the boundary, the concentration i8
considerably increased (increased to twice the unbounded
solution if L=0). in more complicated cases of distributed
initial concentrations and multiple boundaries, it i8 in
principle possible to use these superposition techniques, or
more convenient mathematical techniques. A3 an example, we
will consider an initial vertical distribution CO(Z)
specified in a two dimensional uniform flow with finite depth
as shown in Fig 2.6. The initial condition is

e L (2.64)

The diffusion péttern is8 governed by a convective diffusion
equation, which, upon transforming the x coordinate as

X = x - Ut (2.85)

can be written as

u Co(2) H

\

FIGURE 2.6 Diffusion in confined flow
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ac 3¢ acc

= Ey -5 + E, --5 ,
at X ax2 Y az2
(2.86)
The boundary conditions are
dc ” <
= ¢ % - on Z = 0, H, (2.87)
az
by virtue of (1.154). A Fourier cosine series solution
0o nwz
¢ = 2 ¢h(X,t) cos --C
n=0 . H
(2.88)
i8 assumed, satisfying the boundary conditions (1.159.4a,b) . It
is left as an exercise to verify that the solution is
¢ ' exp (x-U)? o a, exp-(A.2t)cos 72
= (aaF 1172 T Tae e - n “VAn e
4wE_t 4F .t n=0 H
¢ xt) X (2.89.3)
where -
2 2
A = (nw/H) E
n _ z (2.89.b1)
and )
1 H .
ao = ﬁ f co(z) dz, n=0
Y (2.89.¢,9)
I - H nwz ..
an = ﬁ .co(z) coSs —g— dz, n=1,2,....
Note that each term in the series sotution (1.161.a) decays

in a time of Tnzn/xnaz(u/nu)a/Ez

approximately. except the term n=0, which sSurvives a8 a
dominant term, Tnerefore. at large time
(t))HE/(uaEZ)). the solution is

(e ?656;2;172 exXp - ------- (2.90)

i.e,. uniformly distributed with depth and équivalent to that of
an instantaneous Plane scurce with Strength ao:m‘/p
(¢cf. equation t.122).

2. 10 INFLUENCE OF VARIABLE DIFFUSION COEFFICENTS

As nofed in Section 1.6, the assumption of constant diffus: ity
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is actually inappropriate shortiy after the release of a smat)
(as compared to eddy sizes) Ssource. Another reason for
variable diffusivities can be the presence of a solid boundary,
because near the boundaries the structure of the turbulence i3
modified and eddies decrease in size. Furthermore, the texture
of the boundaries can also be important, since the turbulence
field near a flat surface will differ from that near a rough
surface. Modifications of the solutions which describe the
initial growth .stages and diffusion near boundaries have bheen
obtained 'by various investigators, for example by Joseph and’
Sendner (1958), and Okubo(1962) in the case of instantaneous
line sources, Walters(1962), Sutton(1953) and Smith (1957) in
the case of continuous point souces, and Pasquill (1962) n the
case of continuous line sources located on solid boundaries,.

For these more advenced diffusion theories, the reader can
consult Slade(1968), Frenkiel and Munn(1974), Csanady(1973) and
Fischer.et al. (1979). : '




3. SHEAR FLOW DISPERSION

3.1 INFLUENCE OF VELOCITY SHEAR

we have so far.considered uniform velocities. The shear in a
velocity profile can have dramatic influences on the diffusion
pattern, These effects will first be demonstiratad by a simple

solution in the case of linear trends in the velocity profile
OKubo and Karweit (1969) considered the velocity profile

U U+ ay + Bz (3.1)

where u represents the X-component of velocily (the other
components being zero) and obtained a solution to equation
(1.68) for an instataneous foint source at x:-O0, Y=0, zZ2=0 at
time t1:-0, The solution obtained by OKubo and Karweit (1969)
(after Harleman, 1970) is

M 2 .- 22 -

——————— exp ~(~§—— + o--e- 4+ —--- 4 KU)
(4wet) 372 4E_t  4E_t  4E.1t
where
1 .
E = X - Ut - é (ay + Bz)t, ' (3.3.a)
2.2
E. = E, (1 + ¢212)
& ® (3.3.b)
3
3 - EEE
£7y-z : (3.3.¢)
and ’
2 2 2
¢ = (aE, + BZE,)/(12E.)
y z A (3.3.d)

It ¢can be seen from the above that shortly after the relecse
(Ot)a((i the infiluence of shear is unimportant and

the solution s very similar to the case without shear in
(1.101). On the othér hand, for large time (&1])2>>1,

it is noted " that the peak concentration aecays as

t7° instead ot the t-3/2 decay in the case of
unsheared flow, i.e. much faster than the uniform flow
solution, in effect and by virtue of (3.3.b) the effective

diffusivity is considerably increased for Iarge.time, due to
the elongating influence of shear. Also note that for large
time we can approximate (3.3.b) as ’

2

3o
2 _ £

E, & E ot = - --&_

£ x (#T) 2 at (3.4)

which vields

o .2

E 2,3
5 = #°t

2 e ;
3 X (3.5)

and (3.4) can alternatively be expressed as
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3¢

£
2E -
which is analogous to the "4/3 Law" (cf. 1.72) for relative

diffusion but arises in the much different context of shear
flow.

(3.6)

The above example displays the important and convenient result
that the effect of shear can be incorporated into “"dispersion
coefficients" in anology‘to the diffusivities.

in contrast to the shear dispersion in an infinite medium
displayed above, the behaviour of the solutions differ
considerably when the flow is confined petween boundaries. For
example in a shallow sea, the flow and the diffusion processes
are confined between the bottom and the free surface, where the
no flux condition *(2.82) applies. The convective-diffusion
equation can be averaged in tnhe vertical, and as to be shown
priefly, the dipersion of the mean concentration field can be
represented in analogy to the Fickian diffusivities. in sheanr
filow the spreading of a patch occurs due to both turbuient
diffusion and its distortion due to shear. when the equations
are averaged vertically, it is therefore reasonable to expect
that the distortion (elongation) due to shear appears
equivalent to much increased effective diffusivities. \

The following method is based on the early analyses of Taylor
(1953, 1954), Aris (1956), Elder (1959), Bowden (1965) and
Fischer (1967). The formulation of the shallow water equations
will closely follow that of Nihoul and Adam(1974). More
detailed discussion can be found in Fischer et al. (1979).

we start with equation (1.68), alternatively written as

ac 5 9

o . ¢_ N _

3t + Veuc + az'c azEzaz + T KC (3.7)

where use has been made of the continuity equation (1.6) and
V=(3/3x, d8,/3y) and U=(u, v) stand for the

horizontal components of the gradient and the velocity vectors,
w is the vertical velocity and T represents tnhe

horizontal diffusion terms T=VeEyeVc. We

assume that the horizontal velocity and concentration can be
separated into vertically averaged and fluctuating (deviation
from the vertical average) components

¢c =C + Cc"

=T (3.8.a,b)
= u + u”
where for instance
- 1 " ‘
¢ = - J c dz . (3.9)
HJ-n

The free surface and the bottom are respectively defined as
z=9 and z=-h, bounding a total depth H=n+h. '
Integrating the continuity equation (1.6) in the vertical
yields
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of o(e”') and 0(é6™')) dominate, *
yielding (3.13). : ©

Equation (3.13) can be integrated twice, resulting in

. 1 2 . _

c"(z) - ¢"(0) = (j e I u" dz’ dz®) o VYc .
-h EZ -h (3.16)

Then the dispersive flux term on the right hand side of (3.11)

becomes

1 <
S§ = - - ¥s Hu"c"

H (3.17)
1 noLrz oy 7t L -

= - - Ve J u-I -- I u" dz‘’ dz" Vc dz
H -n -n Ez J-n

n 4 z ac

-2 j u‘-f t f u," dz'dz"dz ---,

Hax, J-n " J-nE, J-n Y X j

the last expression being written in indical notatiop. with
x; for i=1,2 representing x and vy directions respectively.
Note that the integration of the second term op the left hand
side of (3.16) does not contribute to (3.17) since ¢ (0) s
constant. .

The form of (3.17) suggests that we can express this term ip
linear proportion to the iocal gradients of mean concentration

in analogy to the Fickian expression (1.63), i.e.
- 1 -9_ H K. . QE_ ' (3.18)
H ax; '4oax;

SO0 that we can write

£ " z 2"
Ki; = - - f u," I = = I uJ“ dz’ dz” dz
! HJ_n -n Ez J-n

where Kij i8 the horizontal dispersion tenscr,

(3.19)

Note that the dispersion terms in (3.18) are generally
anistropic,'depending on the three dimensional structure c¢f the
tntegrated velocity components. Making the substitution (3.17)
and dropping overbars, equation (3.11) describing the
dispersion of vertically averaged concentration ¢ becomes

acC C 1 -~
-—- % ach = - ¥eo HEVec - KcC
at H

(3.20)




where

for i=f{,2 where Ki' is the dispersion tensor,

Ei stand for the vertical averages of the horizontal
turbulent diffusivities Ex and Ey, and € . 18 the

total dispersion tensor. Note that (3. a1f is written with
respect to the principle coordinates of the turbulent
diffusivities, although in general E:= E . 18 also a

. 1J
tensor, in amy general coordinate system.

The turbuient diffusivities were assumed to be constant in the
earlier developments. On the other hand, the dispersion
coefficients Ki‘ are not constant .in general, depending

on the variable current distributions, and therefore it is
often not possible to write either K . or

in principle coordinates, since the oruentatnon of these
coordinates are subject to .change with horizontal position. we
must therefore use the full anisotropic form of (3.20) to
investigate dispersion problems in two dimensions.

It is often true in practice that the dispersion coefficients
are much larger than the horizontal turbulent diffusion
coefficients, since the vertical assymmetries of the current
and concentration profiles that are accounted for in (3.1¢)

become predominant. Wwe can therefore expect that
B K . and neglect the turbulent dnffus-vnty Note thaf
i f the depth variations are small (1.e. H V9H<<L™

where L is a horizontal scale) we ¢can write (3.20) as

9, Te¥e = VeEeve - ke

== + UeVYC = et evYyCc -~

at (3.22) %
An interesting example of two-dimensional dispersion is
discussed by Fischer et al/. (1979), who idealized the
currents on the continental shelf as shown in Fig.3.1.a. The
dispersion tensor is evaluated from (3.19) as !

2 2 :
H 8 UpS/5 5 UgVg

_____ 9 (3.23)
5 UgVg 16 Vg

An example calculation for this case with currents of the order
of 5 cm/35 is shown in Fig.3.1.b. After five days the
concentration released from an instanteneous point source moves
along the shelf and is dispersed into an etongated eltiptical
shape inclined wi}h respect to the shelf area.

. M 0‘
: - | H/ AN .
L] ; '
l ud ses </
FIGURE 3.1 D' iepersion on a continental shelf (Fischer,

1978) . 0%



3.2 LONGITUDINAL DISPERSION

I we consider unidirectional steady flows 1n the x-direction
that are bounded in a cross sectional area of A, and

neglect the decay term, it can be verified that the
corresponding equation (3.20) becomes

ac - ¢ 1 3 - dcC
at " Yax T A ax MBI GL
(3.24)

.

where 4 and ¢ are respectnvely the sectionally averaged
velocity and concentration, Ex the sectional averaged
longitudinal turbulent diffusivity (in the flow direction).

1
KK = I uTc"®" dA
acC A

de

(3.25.4a)

is defined as the /ongitudinal d:spersibn ceefficient where
€E = X - ut (3.25.0)

and c¢c" is solved from

W38 _ 2 acm a3 act

= Eo==-
ax dy Yay 3z “%az

(3.26)
in anatogy to (3.13).

With this approach, Taylor (1953) solved the dispersion problem
for laminar shear flow in a pipe (the diffusion coefficient was
taken to represent molecular diffusion). Accordingly,.-he
solved thée equivalent of (3.26) written in cylindrical
coordinates, determined c¢* for kKnown laminar velocily
profiles in circular tube, then determined the longitudinal
dispersion coefficient from (3.25) as
2, 2

Ky = R™Ug (3.27)

1920,

where R is the radius of the tube, uy the

centertine velocity and Dn. the radial molecular

diffusivity. In his later work, Taylor (1954) extended his
analysis to the turbulent shear flow in a pipe, using the
Reynolds anology, which states that the transfer of mass,
heat, momentum and turbulence are exactly analogous, he was
able to relate both concentration and velocity profiles to the
turbulent diffusivity, and obtained

El = Ky + Ex = 10.1 R u,

X (3.28)

where u, is the shear velocity (defined as
u,=(T/p)'/2. T being the shear stress).

Note that (3.27) and (3.28) constitute two different ways of
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writing the dispersion coefficient., The difference implies

(consider o ihe turbulent equivalent of (3.27)) that the
cross-stream turbulent diffusivity can be expressed as
Er:aRu*, where a 15 constant. In fact

Tayltor (1954) obtained (3.28) as EL:(10.04+0.06)hu.
(az0.06), showing the negltigible contribution of the
turbulent diffusivity.

~

Elder (13%9) applied the same technique 10 two dimensional
unidirectironal flow with i1nfinitely wide horizontal extent and

constant depth h. In thio chcee (3.724) becomes
3¢, 9¢ _ o a¢
at ax L axé '
(3.29)
where L‘L:Kxa-Ex and
ih Zl z"
K, = - - u" - u* dz’ dz* dz
. hdy o tz Jo
(3.30)
and for a logarithmic velocity profile
E, = 5.93 hu
L . (3.31)
1S5 obtained, Note that 1 f we use the non-dimemnsional variables
v = z/n, & = u~/0,, € - E,/E,,
u 2= (3.32.a-c¢)
where
. ’ s ’ h
Uud = u"@ = - J u*2 az,
h 0 .
= { ¢h (3.32.d,¢e)
E, = - J E., dz
2 z ’
n 0
we c¢anl also express (3.30) as
“2°u2
Kx = —---M_ 7 (3.33)
EZ
whet e
1 n .y 0"
I = - I L ] I E I ¢ dn’ dn" dn
0 0 (8] (3.34)

Fischer at al/. (1979) note that the dimensicnless integral
I has values of 0.05-0.t forr mest practical flows,

so that it may suffice to take I=0.1%. The rms

amplitude of the velocity deviation from the mean is lumped
tnto the parameter Oy and EZ tS the mean

vertical diffusivity in (3.33).




Bowden (1965) considered various velocity and vertical eddy
diffusivity distributions and showed that for those cases
considered, values of EL/hU‘ (cf. equation 3.29)

ranged between 5.9-25,. On the other hand, observations in
natural .water courses of limited width indicated considerably
higher values: For example Fischer (1967) reported values of
EL/hu' in the range %0-700, and to account for

the large difference with theory, it was proposed that lateral
(transverse) shear effects not considered so far could have

caused the disperancy. Fischer (1967) has in fact argued that,

5ince the transverse mixing time scale in wide channels shoulid

be larger than the vertical mixing time scales, transverse

shear could have a more predominant effect on'longitudinal o
dispersion, This is an apparent paradox, since with increasing
widths we do not apparently obtain the case of the infinitely

wide channel (the two dimensional case), but has since been
PCSOIVEQ through both theory and experiments,

With this motive, Fischer (1967) conside€red the lateral shear
acting on the vertically averaged velocities and first,
averaged the velocity distribution vertically as

niy) donyy DT Thiay (3.35)

where u®™ i3 the deviation of the velocity field from the
cross-sectional average u, and h(y) is the lateral

depth variations. By requiring that the T" terms in

equation (1.75) balance the left hand side of (1.76) instead of
the vertical diffusion terms, the longitudinal dispersion
coefficient is then calculated as '

1 w Y 1 y"
£, = - - q"(y) J ------- qQ"(y ") dy’ dy" dy
A E h{y"”
0 . Jo EyhyT1 do (3.36)

whetre E is the transverse eddy diffusivity, w is
the Wid¥h and A the cross-sectional area of the channel.

In actual water courses, there are number of effects modifying
dispersion, such as the actual three-dimensional channel ¢ross-
sections, secondary flows, channel irregularities etc., so that
some empirical judgement enters the dispersion formulations.
Considering these effects, Fischer (1975) gives an estimate Of
the longitudinal dispersion coefficient in analogy to (3.31) as
-UE'Z
E, = 0.001t ---- (3.37)
hu,

where U, w, h are the mean velocity, width and depth of the
c¢hannel and u, the friction velocity. Reasonable

agreement with observations is reported (Fischer et

al., 1979).

in laterally coenfined fiows such as in rivers, estuaries and
continental shelves, the transverse mixing effects are
impor-tant and should be taken into consideration,
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FIGURE 3.2 Longitudinal Diepara;on coefficient 1n a

rectangultar channel (After Taylor, 1974).

While Fischer’s analysis accounting for trancsverse mix1ng
indicates that these effects c¢an ncrease the dispersion,

it provides little insight onto the problem of JTongrtudingd
dispersion due. to three-dimensional velocirty and concentration
distributions. Taylor (1974) has consaidered the turbhulen” flow
constrained by both horizontal and vertical boundaries of
rectangular cross-section, and has obtained e~act solutions for
velocity and concentration distribut yons, from whoo h the
longitudinal dispersion is calcultated (from 3.2%). Although an
oversimplifying assumption of constant turbulent diffusiv ties
has been used, Taylor’st1974) results show Imncreasing
dispersion effects for increasina aspect ratios as displayed in
Fig., 3.2 . Here, the non-dimesional variables are defined as

P - S 55___
L v 2T U 2ne/E
. “m ez m z _
‘ (3.38.a.,0
_ T n2/E nZE )
T = LRy —2—2
Tey WS/E,  WEE,

where U is the maximum (centerline) velocity, h 15
the height and w is. the width of the channetl, and
TCZ and Tc are respectively the vertical andg
lateral mixing time scales.

The infinitely wide channel case (two-dimensitonal flcow) i
shown by the dotted lines Fig. 3.2 and corresponds to
EL=8.46x1073U PnC/E, (which 15 n

analogy to (3.31), but has a different form due to the

assumption of constant E,). Note that the dirspers)on
coefficient for the rectangular section (sobisd 1ine) does not
appraoach the two-dimensional solution as ¥re

(Tc'+0) and n fact differs by a large factor from this

case, The three-dimensi1onal problem includes the latersgl snear
effect, which is present no matter how wide the channel, wh,le
the two-dimensional problem has no such effect by definition
Comparison with various field and laboratory data indicates the
increasing trend with increasing T.’ values, in spite of

the dirfferant flow geometries and subjective evaluations ot the
diffusron coeffrcients. '

49



3.3 DISPERSION IN OSCILLATORY SHEAR FLOW

The analysis of dispersion in oscillatory shear flow is mcre
complex than the steady unidirectional flows considered atove,
mainly due to two reasons. Firstly, the unsteady and
convective terms in (3.12) must be kKept in addition to thcse
already appearing in (3.13). secondly, oscillatory motiors
create phase lags between concentration and velocity
distributions both in space and time. However, assuming &
single frequency of oscillation and by averaging the equations
both vertically and in time, a mean dispersion coefficient in
analogy to Taylor’s(1954) hypothesis for unidirectional flows
can be defined. The equivalent tongitudinal dispersion

coefficient for oscillatory flow can be defined as
(E > = "'!' < U'C' ) (313906)
- ac :
9

where the velocity and concentration are decomposed into
vertically averaged and deviational components

¢ = C(t) + c"(z,t)

- (3.39.b,¢)
U - u(t) + u*(z, t)

following the notation of the earlier section, and where

t
€ = X - j a(t) dt° (3.39.d)
o .
represents a coordinate transformation to the time and space
averaged center of the patch. The angled brackets imply time
averaging .

-
<X> = - I X dt (3.39.¢e)
T do

where T is the period of the osciltation.

Bowden (965) investigated the dispersion coefficient in iwo
dimensional oscillatory flow, but because he used equation
(3.13) without due concern for the unsteady terms (this is8 the
limit of T#e, i.e. infinitely long period 1

oscillations), he obtained a result that is similar to steady
flow, The longitudinal dispersion coefficient found by Bowden
is one half the value of the coefficient obtained for steady
unidirectional flow with the same velocity shear profile and
the same constant vertical eddy diffusivity. The ratio of 1/2
arises because of the phase shift in time between velocity and
concentration.

Okubo (1967) investigated the same problem, specifying a

shear profile with velocity increasing linearly in the vertical
and which has both fluctuating and steady components
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4 . 2w
u = (-) (Uo + Usin -- t) (3.40)
h T

where UO and U are surface velogity amplitudes and

T the period of the oscillation. OKubho obtained solutions
through Aris’ (1956) method of moments, and for this case he
expressed the dispersion as a functional representation o+

<EL>': f(UO' U' nl Tl Tc’

T4

(3.41,3)
where
T. = he/E
¢ z (3.41.D)
i8 the time scale of vertical mixing. He showed that the
effects of steady and oscillatory parts of the motion on the
longitudinal dispersion are additive (superposed) such that

<EL>t = (EL)5 + <EL>° (3"2)
where the subscfipts t, 8 and o denote the total, steady and

oscillatory contributions respectively, OKubo (1967) obtained
two limits for his solution:

=T, 120 UT ,
<CEp>g = -9--€ [1 o3 (=-2-)F), for T««T,
120 4TS U T,
‘and
: 2
U =T 120 v
B >¢ = -2 + === ——)2]. for T))Tc
120 236 U, (3.43.a,b)
when the fliow is steady {U=0) the equivalent value is
2
U,°T
(E)g = -92--€
L’s 120 (3.-44)

(the solution for this case of steady flow with linear profiie
¢an also be found in Fischer et al., 1979, p.85). On the
other hand, the oB8cCillatory flow dispersion coefficient in the

case of equal amplitudes with the steady case (U:Uo) as
related to (3.44) are

<E; > T
-k - 3,04 ()2, for Te<T,,,
(E)g o Te (3.45.a)
and
<E, >
--LZ2 - ¢.51, for T>>T, . (3.45.p)
(EL)S

This result indicates that for T((Tc, the dispersion
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coefficient is proportional 1o Ta, whereas for
T))Tc it i3 a constant about one hal!f the value of the
steady case.

This behaviour is expected, since for long periods of
oscillation, the diffusion process is similar to that in steady
flow, where an initial patchi has sufficient time to diffuse
before the flow reverses. On the other hand, in the l1imit

T+»0 (rapid oscillations), the diffusing patch returns to

its original position rapidly before any diffusion can take
place, and therefore cannot respond to the shear in the
velocity profile, making the oscillatory dispersion coefficient
vanish in this limit. (A discussion ot these 1limits is given
in Fischer et al/., 1979, p.9%).

Later, Holley et al/. (1970) considered the same probiem
with the linear velocity profile (3.40) (without the steady
component, UO:O) and obtained an analytical solution

from which they could find an expression for <Ej >.

Their functional form is :

CE > = E5 f(T') (3.46)
where '
T = T/T, = T E,/n® -
and
2
ulT
Ey = o-i€ (3.48)
240

which is the constant value of <g; > for the limit

T>>Tc {i.e. one half of 3.44). The function (3.46) iS
shown in Fig.3.3.a, where the ratio <EL>/E° is

plotted against T°’. In applying the results to estuaries,
Fischer at'al. (1979, p.235), make an analogy to (3.31),
and use some empirical judgement to replace E, on the

left hand side of (3.46) by

- 2p2
Eo = a Io,®ne/g,

a Io,“T

assuming Eo. the timit of (3.46) for T>>Tc. to

be proportional to the steady dispersion coefficient. .iIn fact

for a linear velocity profile (3.40) it is found that (Figcher,

et al., 1979, p.93, Table 4.1)

e = 2 -

°u‘.- uc/24 and 1 = 1740 (3.50)

so that (3.44) results in the case of steady flow. Comparing

with (3.48) the proportionatlity constant is found as a=1/a,

and therefore (3.49) reduces to (3.48). It should be noted

that in their analogy, fFischer et al. (1979) have

‘erronecusly omitted this proportionatity constant, which should

be included, Neverthless, by combining (3.46), (3.49) and

(3.50) we obtain
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FIGURE 3.3 (a) Oscillatory flow dispersion coefficient,
function f(T') (Holley et al., 1970), and (b) the
normalized function g(T’') due to Fischer et al. (1979).

<Ep> = alo,8T ----- o mmmes .
T 240 T’ (3.51%) N

which is in fact the same os (3.46), written differentiy.
Fischer et al. (1979) suggest using the first equality in
(3.51) empirically for velocity distributions other than the
case considered above., For example in a wide and shaljow ’
estuary, they suggest using  the time scale Tc:walE
corresponding to .lateral mixing, rather than that for
vertical mixing, since then the lateral shear is expected to
dominate the dispersion. The function g(T'):(T')"f(T’)

18 shown in Fig., 3.3.b.

In none of the.analyses discussed above, it was attempted to
solve for the actual velocity distribution in oscillatory filow.
It has commonly been accepted that the velocity profile at each
instant is the same as an equivalent steady flow. In reatity,
the velocity distribution is also subject to a convective-
diffusion equation of its own, where the turbulent diffusion of
momentum in the direction transverse to the flow must be taken
tNto account. In fact, the diffusion of the momentum in
oscillatory flow gives rise to shear waves in the fluid,

Just as concentration waves.in the case of diffusion equation
which propagate in the transverse direction giving causing
phase shifts which depend on position in the fluid. These
phase shifts are important in the correlations of u" and

¢" in equation (3.39.a). ' '

These influences of simultaneous diffusion of momentum and
concentration were accounted for the first time by

Taylor (1974), who solved both equations and rigorously
constsucted the oscillatory tongitudinal dispersion coefficient
from (3.39.a). In his analyses, Taylor used constant turbulent
diffusivity coefficients for both momentum and concentration,

Taylor’s (1974) oscillatory flow dispersion coefficient i3
anologous to (3.51), although the dependence on T’ is
modified compared to the Holley et al/. (1970) solution.
The results are plotted in Fig.3.4 as a function of T

and for different values of T. It may be noted that a
maximum value of <EL> 1S obtained for certain values of

Tc depending on the period T.
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FIGURE 3.4 Oscillatory flow dispersion coefficient for

different values of the period T (Taylor, 1974).

Taylor (1974) also showed that it is not appropriate to
normal ise the oscilatory flow dispersion coefficient with
respect to the steady flow dispersion, for they are two
different processes. - wWhen the variables are normalized as

<E; > T
’ - — ’ ~ sy o
<E|*> = 62‘; and T_Z = (T%) a =%

T
- T-
|
I
|
1
350 T T LELELAEE | T
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|} Say |
3004 Laboratory o -
Segall(i9mn) ¥’ i
2504~ 1
200}~ -

T‘,’Or’l"?
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() f}%&} xic*
8
1
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FIGURE 3.5 Normalized oscillatory flow dispersion

coefficient (After Taylor, 1974 and Fischer et al.,
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a single curve resultls as shown an Firg 3 8% The mantmum

dispersion occurs for T:Tc/1.58:0.63Tc. t.e. when
the oscillation period i8 of the same order a4s the transverse
mixing time (T’=0.63). Experimental verification of the

resulits as obtained by Taylor (1974) are also Superposed.

-1t I8 quite interesting to plot the empirical formulation of
~the Fischer et al/. (1979) based on the solution of Holley

et al.. (1970) in comparison to Taylor’s (1974) results, as
shown-.in Fig. 3.5, It is noted that the agreement of the two
versions of the oscillatory dispersinn coefficient is quite
good. for T>Tc (TZ'(i). On the other hand, the two

Solutions aiffer considerabily for the range T<r

(TZ'>1). for the phase distribution of concentration and

velocity profiles begin to pléy important roles, which are not
accounted for in the former solution.

Taylor (1974) has further considered (he oscallating flow i a
channel of rectengular cross-section., The main results are the
shifting of the period of oscilltation for which maximum
dispersion occurs and rather small modifications in the
functional form displayed in Fig.3.5% for different values of
thera@yo Tcz/Tcy' Taylor has found that by varying
Tclchz/TcY (cf. equation 3,38) in tne range

10 .10 1, the peak value of the dispersion cofficient
corresponding to Fig., 3.5 changes by about 15 7% and the value
of Tz':i/T' at which the peak occurs varies between

1.58 - 4.5,

Oscillatory shear flow dispersion with apptications on
horizontal mixing in the ocean have been investigated by Young
et al. (1982). Considering a periodic shear flow velocity

U = u, sin(mz) cos(wt) (3.53)

in an infinite domain, they solve for the concentration
distribution and thain a dispersion coefficient

2

1 u K
(EL) = -‘(_Q~)  ——"
il 4 W

14K,

5)
(3.54.4a)
where

2
K, = E,m~/w .
..o v (3.54.D0)
“‘Since the velocity field is periodic in

S 2, the results car also
be interpreted for an eéquivalent flow between horizontal
boundaries placed at z=0 and z=w/m, where the

velocities vanish, i.e. a flow with a vertcal extent and
oscillation period of

1

h.= w/m and T = 2u/w (3.5%5)

respectively. Tne dispersion coefficient in (3 54.a) can then
be put into the form

> 1 T

<E
-—bf S [ s (3.56)
Ug, T 16




- targer than that plotted

where T*=E,T/n2=T/T, as defined in (3.52.0).
This solution also gives a maximum value at T*-2/%=0.64

where the value of the function i8 (EL)/UO T .

M0 04. 1t can be observed that the form of tne solution i3
similar to those presented earlier in Fig.3.5, coinciding
better with the functional form of Holley et al. (1970),

put the magnitude of the calculated values are about one order
in the same figure. This is because

btained for unconfined fiow, and the

characteristic velocily U, argely differs from that
defined earlier for confined flows, the gimilarity only being

established through heuristic arguments.

the originaJ solution is ©

in the case of infinite domain, Jjust like

The important resultl
is that two different limits are

in the confined flow case,

obtained for oscillatory shear flow dispersion, i.e.
{E > & (@99)a E for K<< |
L 2w z . (3.57.a)
and
<E, > % (89)2 g, ! for K, >>1.
L am Z » L (3.57-b)

The first case corresponds to rapid osciltations with high >

vertical wavenumber and vanishes in the 1imit K.*O.
Young and Rhines (1982) note the similarity of this case 10 the

"Okubo (1967) mechanism". in this limit, the dispersion i8

directly proportional to E,. The second case
corresponds to long period oscillations and is analogous to
Taylor’s (1953) initial theory of dispersion for steady flow,

where the dispersion effect is inversely proportional to
E

!

z
Young et al. (1982) also construct dispersion coefficients

for a random velocily field, from observed and empirical model s
of the shear spectrum in the ocean. They arrive at the
conclusion that shear dispersion by an internal-wave field i8
dominated by the OKubo (1967) mechanism, rather than the

Taylor (1953) mechanism, since they show a dependence on

Ex:

internal-wave shear dispersion regime
to the meso-scale stirring regime caused by eddying motionsg tn
the ocean is ailso discussed by Young et al. They find the:
importadt result that meso-Scale stirring begins influencing-
the dispersion at horizontal scalies as amall as 100m.

The transition from the




4, SUSPENDED SEDIMENTS

‘4.1 TURBULENT DIFFUSION OF SUSPENDED MATTER

In natural water bodies, such as estuaries, rivers, lakes anag
the ocean, suspended matter is quite common and is often

. distinguished by its yellowish colour., The terms suspended
‘matter, suspended solids, suspended sediments, gelbstofrr or
seston are widely appiied to refer to these concentrations

of solids which appear in a mixture with water. The
concentration of suspended matter is likewise defined as ita
mass per unit mass of the mixture. Since the concentraticons
are often smaller than that of the main constituent of water,
suspended sediment often does not influence the density of the
mixture; so0 that we can use the approximaticns (1.55.a-¢) in
its definition. However, the distinguishing property of
suspended matter is that individual particles are often heavier
(denser) than water. As a result, they sink in the vertical,

- ¢haracterized by the settl/ing velocity Wg, which

differs from the vertical velocity w of the fluid

particles, In other words, the sediment particles move
retative to the fluid in the vertical direction K. we
modify - (1.42.a), (1.44) and (1.45) to write

No = Pp (Up - wg R)

- (4.1)
= PA(UA-U) + pp(TU-wgk)

= _DAB VPA + PA(G"WSR)-

"where the sSubscript A now denotes the sediment constituent.
The first term describes the diffusive flux and the second term
the convective flux. Following the earlier derivations and
developing the turbulent equivalents, we arrive at the
‘turbu]ent diffusion equation -
9¢ = -3¢  olElve -
at Heye 3z R - e . (4.2)
in analogy with (1.68). The boundary c¢onditions at a solid
boundary are also modified as compared to (2.82). Since the
ve|00|ty and the flux of material normal to the surface must
vanish (u 0 and an 0), in analogy to (4.1) we
have

(Es¥chen + ¢ (wskl'ﬁ =0 (4. 3. a)

which for a horizontal surface can be expressed as

EﬂachC"O
Z 3z 8 7 ) (4.3.b)

Note that in the above, we have assumed that no sediment can
pPas8s across a solid boundary, In free surface flows, (4.3.b)
i5 valid at the surface, 1f no sediments are input from the
atmosphere; or else if atmospheric inputs (such as aeolian
dust, or other atmospheric pollutants) are important, we nNust
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set the right hand side of (4.3.b) equal to q, where q h
represents the atmospheric flux of such inputs. On the others
hand, in applying (4.3.b) to the bottom boundary, we must .
account for the bottom deposition loss of sediments. While the’
flow in the interior is often turbulent, there exists a viscous
sub-layer near the boundary. |If the size of the settling
particles is larger than the thickness of this layer they are
reflected from the bottom. On the other hand, particles
smaller than the viscous layer thickness tend to stay near the
bottom to form-a layer of fluid mud and are eventually
deposited on the bottom. The following bottom boundary
condition has therefore been suggested by Sayre (1969) and
Jobson and Sayre (1970):

ac

E., -- + (1-a)w,c + yq = 0
Z 32 G

(4.3.c¢)

where a represents the probability that a particle

settling to the bottom is deposited there, and yq is

the average rate of entrainment into the flow, q being the
storage at the bed. Ssayre (1969) and Jobson and Sayre (1970)
nave obtained analytical and numerical solutions to the two-
dimensional version of equation (4.2) with the surface and '
pottom boundary conditions (4.3.b,C) respectively, and an
initial condition of a vertjical line source. The solutions are
functions of n=z/h, T=1E,/nZ, a and a

settling velocity parameter B:ws/xu. where

x=0.41 is Von Karman’s constant. The concentration

profile becomes time-independent (in the convected
coordinates) after an initial time of 1>0.5, and is

gelf similar. Sayre’s solutions for 7>0.5, B=1, a=0

and a=1 are shown in Fig. 4.1, Jobson and Sayre (1970)
verified their solutions with experimental data and found good
aggreement irrespective of the particular model used in
parameterizing the transverse turbulent mixing.

Later, Sumer (1974) has obtained analytical solutions for the
various ranges of parameters, and has shown that some of the
special cases reduce to Sayre’s solutions.
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FIGURE 4.1 Vertical distribution of suspended matter fqQr
B=0.1 and'at 7=0.5 (After Sayre, 1970).
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FIGURE 4.2 Profiles of velocity, concentration gnd flux of
suspended sediments in the Thames estuary (After McCave, 1979),

In the above descriptions the settling velocity w is a
function of sediment density, size and eddy viscosity,
empirical values of which can be found in the literature. in
situ values'can be obtained through methods outlined in McCave
(1979) . Note, however, that Wg iS different for each

type of sediment (fine, coarse sand, silt, detritus, organic
debris etc.) and Separate equations with appropriate values of
Wy are required to describe the diffusion of each sijze
fraction. In reality, the settling of sediments in sea water
15 often influenced by flocculation (combining of smal)
particles into larger aggregates through electrodynamic
attraction). The probability of flocculation is a function of
particle type, electrolytic strength (i.e. satinity), and
velocity shear (Dyer, 1979),

Example measurements ot suspended sediment profites in an
€stuary are shown in Fig. 4.2, Coarser sediments are usually
concentrated near the bottom, whereas fine sediments in
suspension are more uniformly distributed in the vertical.

4.2 SHEAR FLOW DISPERSION

Considering the diffusion equation (4.2) in the pPresence of
sediments, and averaging in ‘the vertical foliowing the same
methods as in section 3.1, we obtain the two dimensional
equation (Nihoul and Adam, 1974)

2 4+ Beve = L venbeve ¢+ a Ke
- - [} = - ® [ + -
at H (4.4)
where ¥ represents the two dimensional gradient
operator as in section 3.1, and
aQ 1 (E JdcC ¢) Z=v
z = -+ W
H Z 32 3 zZ=-h
(4.5)

represents the total flux through the surface and the bottom.
Subtracting the averaged equation (4.4) from (4.2) yields the

same equation as (3.12) with. the addition of th: following
terms on the right hand side




ac”

Ins(3.12) = rhs(3.12) + wg --- - Q ‘
y ( ) 3 2z ~ (4.6)

in estimating the dispersion tensor E. Nihoul and Adam

(1974) assume low concentrations of fine sediment and therefore
neglect the influence of these terms in (4.6) just like some of
the other terms neglected in section 3.1, and use the basi¢C
pbalance in (3.13) to derive the expression for K, in

(3.19). Therefore the dispersion i3 assumed to be the sSame as
that for neutrally buoyant concentrations.

On the other hand, the settling of suspended matter influences
the concentration profiles as shown earlier and produce
nonuniform distributions even for sufficiently long times after
release. It should therefore be expected that, in general 1ihe
dispersion coefficient should be a function of settiing
velocity, Only in the case of weak concentrations of fine
suspended sediments, we can assume the dispersion coefficients
are not influenced by the negative buoyancy of the sediment.
Sayre(1969) and Sumer (1974) have taken the settling terms into
account and have calculated the dispersion coefficient in the
case of steady, unidirectional flow. The dependence of 1tlhe
dispersion coefficient (normalized with respect to the
neutrally buoyant case) on the settling velocity i8 shown in
Fig.4.3. With increasing settling velocity (e.g. sedimeni
size), the dispersion is increased with respect to the
neutrally bouyant case,

For completing the description of horizontal dispersion in
(4.4), the flux term Q must be specified. This is often done
empiricglly and, neglecting the surface fluxes, Q représents
the deposition 1osses to the bottom or reentrainment from the
bottom into the flow. one of the models of practical
importance is that given by (4.3.¢) and used Dby Sayre(196%).

3 L ] Ls A | T L]

D,(5)/D,(9)
T
1

Sayre's (1968) numerical
solution

) | i I} A I} I

[
[ (3] 02 (2] 04 [ 2] 06 e?
B = wixu,

\
FIGURE 4.3 Long:rtudinal dispersion coefficient for
suspended matter (normalized with respect to neutrally buoyant
substances) as a function of B (After Slmer, 1979).
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the flux lerms for deposition and resuspension are

expected to pe different, since they are actually different
processes, For deposition of cohesive sediments Krone
(1962,1976) suygyests (after McCave, 1979)

1
Q= - wge r (---%C <) (4.7)

for'T<Tc, where T is the bed shear stress,

Tc’the ¢ritical shear stresq below which deposition

occurs,; t the time, tc the "coagulation time" {the

mean time between collisions of particles), and r the mean
number of particlies in a floc, The value of 7T S

reportedly on the order of 0.4-0.8 ﬁynes/cme. This formula
18 actually of little Practical use since the time t from the
beginning of floccutlation cannot be e€asily determined in
nature., A further complication arises because the settling
velocity is a function of concentration; when the sediment
concentration is sufficiently high, wg=kc, where

K and n are coefficients depending on sediment tyre and
occasion, with n=4/3 Suggested by Krone(1962) and n=1%

or 2. suggested by Owen (1971) . For low concentrations of
sediments, Wg Can often be taken as constant (n=0) .
When both the rate of flocculation and the sediment
concentration are low, the Jpproximations r={ and
t<<tc can be made, upon which (4.7) reduces to

Q wsc (1 T/Tc) (4.8)
This expression explains some of the observed features in
estuaries, For example, in many estuaries, a turbidity maximum
and a .corresponding region of hrah deposition ie found in the
mid-reaches of the estuary, where the near-bottom velocities
(and bed shear stress) decrease due to opposing effects of
river and open sea waters (e.g. near the tip of a salt wedge),
In this bottom convergence region, sediment concentratioun
increases and bottom shear vanishes, yielding high deposition
rates according to (4.8).

in the case of resuspension of sediments from the bottom
(erosion), a different formula applies according to
Partheniades (1965)

Q=M - 1
(T/7q ) (4.9)

where M is an €rosion rate constant and Te the
minimum required bed shear stress for erosion to take place,

The above relations are often difficult to use in mode |l ing
“Practice, mainly because they require the Switching on and off
"of the deposition and erosion processes according to Situation.
“Nihoul and Adam (1974) have adopted (4.8) for general modelling
application, assuming that it applies for both deposition
(T(Tc) and erosion(T>Tc), representing 3

it as a reversible process. Replacing rv=(pt/8)u .

where £ is the Darcy-weisbach bottom friction coefficient,
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they write
Lo

. ul :
Q = wge (1 - 6—2) (4.10)
c

Note that this source/sink function formuilates the
deposition/erosion as a completely reversible process, and
gives equal rates of both deposition and erosion for the same
values of settling velocity, concentration in the water column
and flow velocity., !

Nihoul and Adam (1974) have used (4.10) in (4.2) to model
dispersion and settiing of sediments near a dump sSite in a
Shallow sea with tidal flows. The mass m of sediments
deposited on the bottom are calculated from

o Q 4.11

at ) . 41

The convenient form of the source/sink function (4.10)
representig erosion and deposition processes at the bottom has
“been utilized by 6ZSOY (1977, 1986) to model suspended sediment
transport apd deposition due to an ebb-tidal jet in the seaward
side of a tidal inlet. During the ebbing phase of the tide,
the flow issuing from an inlet is in the form of a qQuasi-steady
Jet, with pronounced tateral diffusion effects (as compared to
Iongitudinal difquiOﬂ). Then. using the velocity diStfibutiOﬂ
in the tidal jet obtained by Ozsoy and Uniliata(1982),
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FIGURE 4.4 (a) Jet diffusion, and (b,c)”bottom deposition
of sediments near a tidal intet (After Ozsoy, 1986).
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vertically averaged ecauations that are aNnalogous to (4.4) and
with the deposition and erosion term represented by (4.10) are
solved for the horizontal diffusion within a jet (Fig.4.4,a) of
either nautrally bouyant concentrations op suspended sediments.
Ambient concentrations, lateral entrainment tnto the jet, depth
variations, bottom friction and settling velocity are taken

into account. The deposition/erosion rates seaward of the
iniet are calculated via (4.11), The contours of bottom
deposition rate seaward of the inlet are shown in Fig.4.4.b,c¢
for two illustrative cases. In the first case (Fig.4.4.b), the

inlet vetocity 1s critical Us=U,, S50 that no

deposition takes place at the Jel core, where no diffusion or
settling occurs, In the diffusion. regions of the Jet,
diffusion and settling processes compete and vield maximum
deposition rates at lateral lobes. These lateral lobes extend
seaward and join togethecr at <ome distance, correspsnding to
the building of transverse bars that are commonly observed near
an intet or estuary mouth. In the second case (Fig. 4.4.¢),
the inlet velocity exceeds the c¢critical velocity by 407.
(uo:t.4uc). Erosion occurs at the jet core region,

where deep scour hoies can often be observed in actual inlets,
presumably cut out during peak flows. The lateral lobes have
higher deposition rates in this case and are elongated in form,
producing evidence that the material eroded at the intet mouth
is deposited in the bar system encircling the mouth. Since the
deposition and transport patterns are sensitive to settling
velocity and inlet flow velocity, it is concluded that the
material in the bhars should be highly sorted. These

implications on tidal intet morphology and the abpllcationa to
rejated engineering structures, tidal inlets and river deltas
are discussed in Ozsoy (1986). While the results .are not

directly applicable to river mouth sedimentation, mainly
because of the buoyancy effects in river plumes, the model can
be of some use in understanding the nearshore Qegion of river
mouths. . For example, Wang (1984) has applied Ozsoy’s model
(although without due reference to the original solution
provided by Ozsoy, 1977) to the dynamics of a river delta, in
order to predict delta growth.

Sediment diffusion and dispersion is an emerging field of study

which has drawn wide scale and much deserved attention. It
must however be stressed that the subject is a8 complicated one
requiring considerable empirical guidance. In: addition, many

aspects of sediment transport, such as bed-load and its
relation to flow parameters and bottom texture have not been
described here for they have been considered to be outside of
our limited scape.

For further information, an expedient summary of marine
sediment transport, its relationships with shelf circulation
and implications on morphology can be found in Stanley and
Swift (1976), The modelling of sediment transport an the
¢ontinental shelf requires special attention, considering the
specific nature of the circulation and dynamics on the shelf,
and the state of the art is in a constantly developing stage,
an introduction to which can be found in Smith. (1977).
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5. ESTUARINE TRANSPORT

5.1 INTRODUCTION

An estuary is a semi-enclc3ed coastal water body communicating
with the sea through a moiLth or entrance region and which i8S
diluted considerably by tre influence or river runoff in the
interior region. Although this definition is quite general, it
does not sufficiently describe an estuary, since the physical
nature of each estuary dif’ers considerably from another with
respect to the varying inftuences of geometrical shape (depth
and area distribution, sand bars, isltands, channels, ruggedness
of coasts etc.), amount of freshwater inflow, the nature of the
restricted exchange at i1s connection with the Se€a, the degree
of tidal influence etc. |In addrtion to the above, the weather
conditions can exert signi?icant influences on estuarine
circulation and modify the structure of an estuary
considerably. As a resull of these varying influences, each
estuary has a different personal ity and the stratification and
circulation in one estuary may differ greatiy from another, 50
that only estuaries of the same 1lype can be compared. There
has been various attempts 10 classify estuaries, for example DY
Pritchard (1967) and Hansen and Rattray (1966), pasically
utilizing the salinity and the velocity ratios of surface
values to mean cross sectional values. Generally, an estuary
can be of salt wedge type, where fresh water on the surface

and sea water at the bottom are sharply separated by a wedge,
or partially mixed type, where vertical stratification 1S
strong but an interface is8 not formed, or well mixed type,
where vertical stratification is small. These classes arise as
a result of the physical inputs and the mixing realized in an
estuary. '

Estuarine processes are quite complicated, due to varying
influences of stratification, tidal mixing, wind mixing etc.,
and a subject of detailed theory in its own right, which can
not be discussed in detail n the present ScOPe. However, tnhe
general hydrodynamic, thermodynamic and mass conservation !aws
of Section i1 can, in principlée, pe applied 10 estuaries, with
further specific assumptions and reductions required. The

various aspects of estuarine processes can pe found in a number
of specialized books such as Ippen (1966), Dyer (1973}, officer

(1976), Kjerfve (1978), McDowell and O’Connor (1977), elc.

Our purpose here is not to describé in detail the hydrodynamic
and mixing characteristics in estuaries, but rather how these -
characteristics inftuence the transport and dispersion of a
substance in solution, e.g. a pollutant. On the otner hand.
transport processes in an estuary are nhighly dependent on the
hydrodynamic and mixXxing characteristics, and therefore we
venture for a brief rewiew of influencing factors.

5.2 ESTUARINE HIXING

The processes of estuarine mixing will be briefly summarized,
following Fischer et al. (1979), but Keeping the ScCOPE€ much
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more concise within the present context, Various mechanisms
are considered, which are often superposed in real estuaries.

Wind mixing:

wWind drift and mixing is often important in shaliow and w.de
estuaries, The surface stress exerted by the wind constitutes
a force at the surface, which is redistributed over the water
column through the vertical diffusion of momentum. In salt-
wedge type estuaries (two lavyer stratification), the wind
induced. driving force influences only the upper layer, -and
causes entrainment processes at the interface. On the other
hand, in well-mixed estuaries, the wind force is distributed
over the whole depth, so that it influences shallow regions
more than deep regions, A residual wind-induced circulation
can therefore be driven in estuaries with large depth
variations, which can influence the dispersion Patterns
(Fischer et al, 1979).

Influence of stratification on mirxing:
One of the most important factors to be considered in estuaries
i5 the inhibiting influence of stratification an turbulance,
and hence on vertical mixing. As compared to the homogeneous
cases considered earlier, an extra amount of energy is required
for vertical mixing in order to overcome the potential energy
of stratification. in estuaries, this energy is derived from
boundary and internal shear. One of the various formulas
describing the effect of stratification on vertical diffusion
18 due to Munk and Anderson (1948):
. + 3.33 Ri)-3/2

Ev Eo (1 3 33 Ri) (5.1)
where Eo i% the value .in the absence of stratification,
and )

. red

Ri (g/p) (3p/32)/(3u/dz) (5.2)
is the gradrent Richardson Number, p=pl(2) and
u-u(z) being the density and the horizontal velocity
regspectively., As'indicated by (5.1), the vertical diffus vity
(of either momentum or concentration) decreases with increasing
stratification and increases with increasing vertical shear.
Fischer et al. (1979), however, caution for indiscriminate
uge of (5.1) in predicting vertical diffusion, since many other
processes that need empirical definition e¢an influence
diffusion processes,

In most ©stuaries, there is an influence of river water S
entering from the head of the estuary and the Sea water
entering from the mouth, 80 that there is both horizontal and
vertical stratification, Fischer et 3! (1979) provide a
classification of estuaries based on the two parameters of
estuarine Richardson Number and densimetric Froude

Number, which incorporate the geometric scales, the fresh
water discharge and the density difference between river and
sea water, By superposing these two dimensionliess parameters
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v Hansen and Rattray’s (1966) classification diagram, they can”'
find the ditution ratio of -the salinity in the estuary.

In addition, in an estuary of elongated form, the cross section
15 often not uniform in the longitudinal direction and depth
variations in the transverse direction are important. wWhile the
opposing influences of riverr and sea water generate depth
dependent vertical circutation, this circulation is modified by
transverse mixing and lateral depth variations. Sumer and
Fischer (1977) (after Fischer et al/, 1979) have made some
laboratory investigations with lateral depth variations and
vertical stratification in which they have shown that density
stratification influences transverse circulation and mixing to
a greater extent than vertical mixing. In real estuaries, they
éxpect these influences to play important roles.

Longitudinal Dispersion:

Assuming an estuary with longitudinal variations of cross

sectional area A(x), and a flow induced by fresh water

inflow u:Gf/A, where Gf is the river discharge,

equation (3.24) derived in section 3 should in principle be

applicable to describe the longitudinal dispersion in an

estuary, i.e. considering steady flows due to river discharge

alone, we have
A(x)ac i G ac & (K +E )ac

at fax ~ ax OO KxtEx)GL (5.3)

Here, Kx i the longitudinal dispersion coefficient

which must now be evaluated from (3.25) based on the different

conditions of stratification, velocity distribution, transverse

mixing etc., as summarized above.

In principle, the use of equation (5.3) with appropriate values
of the longitudinal dispersion coefficient, should describe the
dispersion processes in an estuary. However, as noted above,
Ky is modified due to a number of influences. A

method often suggested was to obtain Ky from the

observed longitudinal salinity distributions, since the c¢cross
sectionally averaged salinities also obey (5.3) with the
unsteady term omitted for equilibrium conditions, and hence
could be used as a tracer. On the other hand, Fischer et

al (1979) admit that, in spite of the considerable

developments in the last 25-30 years since these ideas.were
suggested, there is still no general predictive method to
obtain-the dispersion coefficient in estuaries. Neverthel¢ss,
equation (5.3) has often been used in estuaries with
experimentally determined values of the dispersion
coefficients, with examples provided by Officer (1976) and
Fischer et al (1979).

Tidal dispersion:

In the above sub-sections, the influence of oscillatory shear
flows, such as that occurs due to tidal propogation in
estuarires have not been considered. in the pres3ence of
Stratifacation and residual circulations, such analyses are
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tedious and produce tittle of practical use, although an
understanding of various contributions can be reached (c¢f. Dyer
(1973) and Fischer et a3/ (1979)).

Oon the othér hand, the longitudinal dispersion in wel] mixed
éstuaries due to tidal oScillations atone can be estimated
through the methods outlined for oscillatory shear flows 'n
section 3, Fischer et al (1979) have taken this route, but
considering the dominant influence of transverse miking have
formulated (3.51) such that the transverse mixing time have
been used instead of the vertical mixing time. We have a ready
discussed these aspects of the applications in section 3,

Tidal pumping:

The tidal oscillatory flow in estuaries often gives rise o a.
net steady circutation, which only becomes apparent after
averaging the currents over the period of osciltltation. These

residual circulations arise mainly due to the noniinear terms
in the equations of motion which yield mean currents when
aver‘éged: convection and turbuient bottom friction and th()v(‘\
interactions with bottom topography. Examples of residual
circulations in estuaries are given by Stommel and Farmer

(1952), Bowden and Gilligan (1971), Van de Kreeke (1975,1978)
etc. These residual circulations contribute effectively to‘tne
longitudinal dispersion and exchange processes,

Stommel and Farmer (1952) have considered the residuat
circulations near the mouth of an eéstuatry. As shown in Fig.
5.1.a, the ebb flow in the estuary is in the form of a sink
flow converging towards the mouth, and the volume of water
ejected out of, the estuary is in the form of a semi-circle,
During flood flow, the water entering from the sea can be
idealized as a rectangular plug intruding the estuary. I|f we
take a time average covering both phases of the tide, then a
residual circulation with two cells on both sides of the
centerline will result and therefore only a proportion of
material introduced on the ocean side during flood will return
to the ocean during ebb-flow. This leads to irapping within tne
eéstuary. Stommel and Farmer (1952) applied this concept to the
salinity budget i1n the estuary instead of the mixing of a
pollutant, but the concept ¢qually applies to the exchange of a
pollutant through an estuary mouth. The residual circulation

-7

ESTUARY

OCEAN

Ebb Jet

FLOOD

Flood Volume

FIGURE 5.1 Idealizations of tidal residual flow near
entrances (a) Stommel and Farmer (1952), (b) Ozsoy (1977,
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FIGURE 5.2 Ocean mixing coefficient as a function of bottom
friction and tidal excursion (After Ozsoy, 1977) .

3

represented for the estuary side in Fig. 5.4.a is in fact atso
valid for the ocean side of the estuary mouth, reversing the
roles of flood and ebb (mirror image of Fig.5.1.a with respect
to the mouth region).

The fiood flow represented in Fig.5.1.a (or alternatively the
ebb-flow on the ocean side) is actually in the form of a
turbulent jet as shown in Fig.5.1.b, rather than the idealized
form of a-slug. The hydrodynamic and mass transport .
cnargcteristics of such jets have been investigated by bzsoy
and Unliata (1982) and Ozsoy (1986), incorparating the
influences of tateral entrainment, bottom friction and
topography. Therefore, the actual distribution of a pollutant
'n the jet and its integrated amount within the volume returned
during the foilowing sink flow can be determined in detail. An
ocean mixing coefficient Yo defined as the ratio

of the average concentrations passing through the mouth during
the respective flood and ebb phases can therefore be defined
and calculated as a function of bottom friction, mouth geometry
and the ratio T:Tuo/abo of the tidal excursion

length Uu,T to the inltet width b, (u

is the mouth flow velocity, T the period of the tide). The
ocean mixing coefficient.thus calculated by Ozsoy (1977) and
Mehta and 6250y (1978) for the case of constant depth is8 shown
in Fig.5.2 as a function of a bottom friction parameter
u:fbo/Bho (f is the Darcy-weisbach bottom .

friction coefficient and no ts the depth) and the

excursion length ratio T. Taylor and Dean (1974) have
considered the Ssame problem earlier, but have found a different
€xXpression since they neglect lateral entrainment in the .et,
as also shown in Fig.5.2.

These concepts of tidal e€xchange at an entrance region has beeéen
applied to the mixing of a poliutant in a bay with the ocean
waters by 6ZSOY (1977), neglecting any fresh water influences,
The tidal flow is idealized 28 a series of quasi-steady flows
(with inlet velocity U, during ebb and -u

during flood)., The average concentrations at the inlet *
(entrance) during the ebb and flood flows are related as
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C. '
Yo Cie (5.4)

where the subscripts denote izinlet, f=flood, ezebb and the
superscript n represents the n th tidal cycle starting with
flood. The mixing on the bay side isS assumed to be more compliex
due to its confined nature, where it is assumed that

cie =pCi et (1-vp) e ! (5.5)
where b=bay, Cpe the volume averaged bay concentration
during ebb, and Yp 8@ coefficient describing the bay

mixing, and varying in the range (0,1), so that the
concentration of the ebb flow at the inlet is always between
the values Ci¢ and Cpe: representing the inlet

(flood) and bay (previous ebb) concentrations. Considering
further the mass balance of ‘the bay during the flood and ebb
phases, Ozsoy (1977) obtained the recursion formula

n . n-1 n-2
®be’ = A1Cpe t AaCpe : (5.6.a)
where
. (1-y4 K
Ay = 1 + SN b ~
1 Yo¥b ~ (1Ik/2) (5.6.b)
1- 1+k /2 :
pp = WIVol¥olirks2)
(1-K/2) (5.6.¢)
and where
K = Q/V = 2a n
/ o/Mp (5.6.d)

is the ratio of the tidal prism Q to the mean bay
volume V, d, being the tidal amplitude and
hb the mean depth of the bay. *

Ozsoy (1977) applied this method to Card Sound in Florida,
where a dye injection study had earlier been made by Taylor and
Dean (1974). Using numerical values of the parameters and the
recursion formula (5.6.a), reasonable estimates of the dye
remaining in the bay were obtained, as shown in Fig. 5.3. In
the case of no mixing in the bay, it is sufficient to take
Yb=1; on the other hand, if the bay waters are

. —Yp= 1 i0en-aicnt aayit
. % i ™
5",‘ m.(ﬂdul say)

= Yor Ypo/2 WPersady atied beg)
:! Oste t'ﬁaud g Yoykr ead Ossam

olf
MNe

Total Amovat of Oye (s

Tide! Cycles .

‘ I T R I A L N N N NG
FIGURE ‘5.3 Total dye in Card Sound, experiments done by
Taylor.and Dean (1974), and calculated by Ozsoy (1977)
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completely mixed with the incoming tidal waters during 1008, %
it is shown that y, should have the value Rl
YD;K/(1+K/2):YDO. These two 1imits bound the
possible solutions that can be obtained for specific cases of
bay mixing. An assumption of partial mixing in the bay with
Yp=Ye/2 have yielded reasonable agreement with

observations of Taylor and Dean (1974), which were obtained by
integrating the dye concentration over the bay volume at
different times. : :

Tidal Trapping:

tn estuaries with storage basins, or relatively stagnant
regions of branching waterways or embayments along the coasts,
tidal currehis can cause a subtle and additional dispersive
effect calied tidal trapping. A patch of pollutant released in
such a system may get partially trapped at the surrounding
embayments or shallow banks during a certain phase Of the tide
and gets released into the mainstream flow some time later.
This influence results in increased dispersion since the fghase
differences between the material in the mainstream flow and the
fraction caught in the tﬁap Zones are seperated from each other
and therefore the patch effectively spreads with an increased
rate. Shijf and Schonfeld (1953) and OKubo (1973) have studied
tidal trapping, and have found that it may contribute to
dispersion in a dgreater way as compared to shear effects zlone.
Fischer et al. (1979) estimate that the trapping mechanisn

may play a major role in many estuaries.

5. 3 CHARACTERISTIC TIME SCALES

There are various time scales characterising the various
mechanisms of exchange and transport in estuaries. we have
already seen in section 4, that two of the basic time scales
are the transverse mixing times

!

- 2 ' - 2
Tey = WS/Ey,  and Ty, = wo/E, (5.7.8.0)
the former being for vertical and the latter for transverse
horizontal (lateral) mixing. :

Fischer et al. (1979) suggest another time scale based on
empirical Judgement and in analogy to the BDOVC. namely the
Pep/acement time. representing the time required for a Slug
of material initially concentrated at one end of the basin to
reach approximately uniform concentration thrOUQhOUt the baSin.
given as_ §
_ g
T,. - 0.4 L2/E
r L (5.8)
where L is the length of the basin and EL the
|ongitudinal dispersion coefficient.

An important concept is the flushing time which is the

average time spent by a tracer particle in the estuary, defined
as the ratio of the frecsh water volume in the estuary to the
fresh water flux (Officer, 1976; Fischer et al.,, 1979):
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Te = Ve/Q
f £/Qp (5.9)
where Qf is the fresh water volume flux and Vf

is the total volume of fresh water in the estuary, calculated

from

SQ—S
Vf = -S-- ay = fdyv = ftvV .
LI ¥ (5.10)

Here, So is the ocean salinity, S the salinity in

the basin and V the volume of the basin, and £ 18 the
freshness defined as the fraction of fresh water at any point,
i.e,

it

f (So - S)/S, (5.11)

and f is the mean freshness of the basin. MNote that the
above flushing time is defined for an estuary influenced by a
fresh water inflow alone.

For a tidal estuary, the tiqgal pr:om flushing time
(Officer, 1976) is obtained by letting VP and
VR respectively represent the volumes of ocean and
river water entering the estuary during a tidal cycle, and
writing‘the salt batance at high tide -
(Vp + Vp)S = Vp S
P R P Yo (5.10.a)
where S is8 the mean salinity in the estuary, and the mean
freshness is '
S, - S Y Y
£ =202 - __B___ - -8 (5.10.D)
So vP + vR P .
where P:zV *VR is the tidal prism. Then the tidal
prism flushing time is
v . fV v

T (5.10.¢)

Ty = =- = =
Q; VR/T ~ P

with T being the tidal period. Since neither the entire

estuary, nor the ebb-water on the ocean side is not usually

completely mixed during each tidal cycle, Tt ]

generally smal!er than Tf'

If we perform a dye experiment in an estuary we need another
measure of pollutant flushing time. Considering a

continuous \release of rate q and steady-state conditions to
prevail, this is given as (Officer,1976)

Tp = pcV/q (5.11)

where p and ¢ are the mean estuarine density and
concentration.



Instead of the flushing time the term res;dence time is
also often employed. However there seems to be a confusion
wWith respect to the terminology applied to the various time
scales of exchange.

Realizing the often confused and misleading terminotogy, BohLin
. and Rodhe (1973) have reviewed these concepts, and have derived

the basic time scales. Basing their analyses on rigorous

foundations, they have defined the time scales based on the

age T of any fluid element in the reservoir (i.e. the

time elapsed since the entry of that element in the reservoir).

The total mass of the basin i3 "0 = pV. A

cumulative age-distribution function M(T) gives the

mass that has spent a time less or equal to T in the

reservoir. All material elements spend an infinite time or

less in the basin, so that

Lim M(T) = My , (5.12)
T~-o00

An age frequency distribution functon ¥(T) can then be -
defined and normalized such that : -

00 . .
J Y(T) dr = 1 : (5.13)
0

which is related to the cumulative function as

1 dM(T)
ViT) = - -o-oc ' (5.14)

o

secondly, consider a steady state volume flux Fg of

material entering the basin or equivalently leaving the basin.
A cumulative transit time function F(T) is defined,

giving the mass leaving the basin per unit time of those fluid
elements which has spent a time of T or 1ess in the

pasin., Obviously,

Iim F(T) = Fo (5.15)
T-o00

and again we define a frequency distribution of transit time
¢(T) such that

00
I $(T) dT = 1 . (5.16)
O P

This frequency function i3 then

1 dF(T)
0(7) = = —_—————, (5.‘7)
; Fo art
).
‘ Iin the case of a steady-state baltance, the two sets of
functi,ons are related tnrougn
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, aM (1)
Fo - F(T) = Mg ¥(T) R

ar (5.18)
or with the ard of (4. 14)
| HQ avir)
®lr) = - % - . (5.19)
F dr

Since F(O):=0, 1t follows from (%.18) that

F'
¥(0) = -9, (5.20)
M0

Equipped wrth the abvsve taools, Bolin and Rodhe (1973) defined
the varatous taime aoales ga follows:

The turn over time 15 the ratio of the total mass of the
reservorr to the total flux

Tg = =2 4 . (5.21)

The average trans:t time of particles leaving the basin
(which 15 equal to the expected life time of newly 1ncorporated
Fat-ticlen) 18 given by )

O
Ty - J T$(T) OT
0

(5.22. a)
Malkinag uine of (5.19) the above equation integrates to

M
- .0 _
Tt = =

F 0

(o) (5.22.b)
hence makina the average transit time and turn-over time edqual
to carh other, AN alternative name for both time scales 1s
resirdence time as suvadgeated by Bolin and Rodhe (1973), who
note that thais lTast term has oftlen been misuscd.

Another time Scale that can be defined is the average age
of particles an the recervoalr at any time, grven by

D0 i 00
s B J TV(T) 3T = -~ J T dM(T) . (5.23)
0 oJo

Since 1t is5 shown that T1=To: there are

basircally two time scales Tt and Ta'

The retatyon between these two time scalen S odetermined by the
faorm of the frequency functions ¥{T) and &(r).

Fhree caces can be distinguished accordina to the ranges of
theee time scalec!




T < Tyt

a t’ . ,
A reservoir with modest transport velocities and source and
Sink regions placed far apart belongs to this case (for
example, a well-mixed, wide and elongated estuary).

T, = T -

Aawell—mixed reservoir with isolated source/sink regions, such
that all elements in the reservoir have equal probability of
exiting at any time i8 characterised by this condition (for
example, a well-mixed estuary of very small volume). Bolin and
Rodhe (1973) note, however, that since any element in the basin
is comprised of particies of all ages, it is impossible in this
case to establish the frequency functions by direct
observation. |In this case, they derive the sufficient
condition (from 5.22.a8 and 5.23)

ViT) = &(T) (5.24.2a)
so that from (5.19) they derive the frequency functions

1
T) = ®{(T) = -~ - %
vI(T) (T) = - exp(-T/T,) (5.24.b)

T > T,

TgiS cgse represents the situation in which most of the fluid
particles entering the reservoir exit in a short time and those
remaining particles gtay in the reservoir for a much lonaer
time, Such a case is possible 1f the source and sink regions
are close to each other (short circuirting), so that any
particles diffusing in the relatively stagnant major part of
the hasin are trapped in these regions (for example a sall-
wedge or partially mixed estuary with stagnant regions).

TakeokKa (1984a) developed these concepts further and redefined
the residence time differently from Bolin and Rodhe )
(1973), sproducing two different residence times, one for the
reservoir and one for the inlet. Takeoka’s residence time i8
not the same as the average transit time, since he defined it
as being the average time required for the particles to reach
the outlet, which becomes a complement of the average age,
These results were then applied to coastal seas in 1wo
important papers (1984a,b).

While the earlier definitions of time scales in this section
apply to specific situations in estuaries, the latter more
rigorous definitions outlined above apply to more general
situations, involving larger basins with more structural
variations, On the other hand, they require the determination
of frequency functions through direct observations or various
modetls,
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