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1. Introduction

Two coordinated surveys of the Levantine Basin were completed during October-
November 1985 (POEM-1-85) and March-April 1986 (POEM-II-86) by the Turkish ship
BILIM and the Israeli ship SHIKMONA. Based on the average profiles of the stability
frequency obtained from these data sets, we use the experimentally calculated values of
geopotential anomaly to estimate the relative contribution of the dynamical modes to the
observed field of motions.

11. Mean Stratification and Vertical Modes

The surface streamlines of the flow field for the two cruises (Figs. 1a and 1b) indicate
the presence of gyres, eddies and jet flows of various scales.

The mean profiles of temperature, salinity and density in summer (Fig. 2a) indicate
strong vertical gradients and high static stability at the thermocline. In winter (Fig. 2b),
the density gradients are decreased and the stability frequency decreases uniformly with
depth. The Brunt-Vaisala frequencies computed from the mean density profile and those
calculated by horizontal averaging of individual N? profiles of stations were compared and
no appreciable differences were found.

The vertical structure equation
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was solved for given stratification parameters, and assuming an average basin depth of A =
2000 m. The first three vertical modes for each cruise are shown in Fig. 3. The amplitudes
of the modes are largest within the upper 300 m, with relatively deeper structure in winter.
The first mode internal Rossby radius for the October-November 1985 case was 12.3 km,
while it was calculated as 10.4 km for the March-April 1986 cruise.
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1if. Modal Decomposition
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The eigenfunction expansion with a truncated sereis of N = 5 modes was used to
calculate the modal amplitudes and the relative contributions to APFE (i.e., each term of
7) normalized with respected to the first mode, which are presented in Table 1.

Table 1
October - November 1985 March - April 1986
Mode(s) a; APE; Mode(z) a; APE,;
1 1.00 1.00 1 1.00 1.00
2 0.02 0.004 2 0.20 0.19
3 0.07 0.08 3 0.001 0.00
4 0.09 0.28 4 0.01 0.004
5 0.07 0.18 5 0.005 0.005

In the summer survey it is found that the first baroclinic mode dominates the obser-
vations, with the higher modes having negligible influence. In winter, the first two modes
are important, with the second mode contribution being about 20% of the first mode, and
negligible contributions being attributed to higher modes.
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Surface circulation maps obtained from the experiments of (
1985 and (b) March-April 1986.
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Fig. 2 Horizontally averaged profiles of temperature, salinity, sigma-6 and static stability
(N?) in (a) October-November 1985 and (b) March-April 1986. Horizontal bars mark
one standard deviation.
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Fig. 3 The density stratification and the first three modes of the vertical structure equatio
(a) October-November 1985 and (b) March-April 1986.
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