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1. INTRODUCTION

A review of marine pollutant transport processes is given, with
the objective of introducing the basic concepts. The subject
has great extent and detail, and is a continuously developing
area of research that is motivated by many practical interests.
Marine polliutant transport processes are of great importance in
many aspects of marine science, inciuaing engineering services
related to marine waste disposal, the assessment of adverse
effects of shipping and industrial sites, and the conservation
of water quality in coastal and inland seas.

The basic concepts required in Studying the diffusive/
dispersive transport of poliutants will be descriped. One is
often forced, however, to use more complicated theory and/or
numerical models to assess these effects in the presence of
more compliex geometry, current systems or in deep basins,

There is also an often empirical element in the theory due to
the need for realistic determinations of diffusion

coefficients via experiments, This presentation precludes such
variations! to the theme, providing information on basic physics
and the tools that one often needs. In addition to pollutants,
the transport of heat, salt and other ecological quantities
(e.0. plankton, detritus, nutrients, oxygen etc.) in the sea
are also governed by similar laws. A number of basic books on
fiuid dynamics (Batchelor, 1967), and transport processes
(Csanady, 1973; Fischer et al., 1979; Kullenberg, 1982) are
advisable to complement these notes.

The basics of hydromechanic theory is briefly summarized in
Section 1, Simple solutions to.the turbulent transport
equations are reviewed in Section 2. The basics of shear flow
dispersion are then provided in Section 3. Applications to.
transport of suspended sediments are considered in Section 4.
Estuarine transport processes are reviewed in Section 5.

1.1 FLUID MOTION

The equations governing fluid motion are briefly reviewed.
The continuity equation
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states the conservation of mass, where the material
derivative is defined as
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for any variable X. An incompressible flvid is defined
as one in which the density of material elements of the fluid
does not change, i.e. equation (1.1) simplifies to

Yoz O . (1.3)
The momentum equation
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expresses Newton’s Second Law of Motion in an inertijal
(rotating) coordinate system on the earth, where Q is
the earth’s angular velocity, p is the pressure, 9 is
the gravitational acceleration and d is the deviatoric
stress tensor (Batchelor, 1967).

The thermodynamic equation is derived from the First and
Second Laws of Thermodynamics. For seawater, which is
assumed to be incompressible, the thermodynamic equation is
expressed as '

oT Vek9T + Q/c
- = )
Dt P

(1.5)

where k:x/(pcp) is the thermal diffusivity

coefficient, with x being the therma) conductivity

and ¢, the specific heat at constant pressure for

the f?u:d. and Q stands for heat sources (e.g. internal
heating due to sotar radiation or frictional dissipation).
Neglecting the latter term yields

T, GeVT = VekVT (1.6)
- L ] - L .
t

1.2 DIFFUSION IN A FLUID

In this Section we will derive the conservation equations
governing the diffusion of dissolved substances that may be
present in a fluid. Consider a binary system consisting of

3 mixture of two different fluids. The densities p,

and pg represent the masses per unit volume of the

mixture. The concentration of each constituent is defined

as the mass of each constituent per unit mass of the mixture,
Ca = PA/P. and Cg =PB/Pj

Since the fluid density is p = Pa * Pg. we

must have c, + cg = §.
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in 8 moving fluid mixture, we define the fluxes. (passing
through a fixed surface) of each constituent as
My = PaUs, Np = pgll
A ATA* 7B B™R (1.7.a,b)
wnere U, and Ug, are hypothetical
velocities that an infinitesimal group (or cloud) of particles
would have on the average, representing the momenta of each
constituent. The total momentum (or total flux) of the mixture
is

-- -
PAUA * PBls

-2
pu

- -»
CpU, ¢ Cpu
AYA * cgUp: (1.8)

where the hydrodynamic velocity is defined as u.

The fluxes defined in (1.7.a,b) are with respect to a fixed
observer and involve both diffusion and bodily transport
(convection) with the fluid velocity. For example, we can
write (1.7.a3) as

- -
Na = PalA

PAlUA-U) + p,0
AR A (1.9)

80 that the first term represents the transport relative to an
observer moving with the fluid (i.e. diffusive transport) and
the second term represents the convective (advective)
transport,

The diffusive flux is commonly modelled by Fick’s Law (an
anatogue of Fouraier’s Law 1n heat conduction) which relates
this flux to the local gradients of thi densily of each
constitucat. in Lhe general non-i1sotropic case, the flux
vector can be expressed as the product of a tensor coefficient
with the gradient vector. If the medium is assumed to be
isotropic, the constant of proportionality is a scalar and
we can write

pA(uA-u) s = DAB vPA (‘.10)
for constituent A, where the diffusion coefficient DAB
characterizes the diffusivity of constituent A in medium,

we consider a fixed control volume V enclosed by a

surface § with outward normal ﬁ. and write a
statempnt of the conservation of mass for each constituent:

] - A
o= ‘PAGV: - NAOfldS + J. rAdV,
at Jy, s v

(1.11)
where r, is the rate of production of constituent A due




to possible chemical interactions. Since the total mass of the
mixture should be conserved,

ra 4 rg = O, (1.12)

i.e. the rate of production of either constituent must be at
the expense of the destruction of the other,

Using (1.9), (1.10), (1.4), the divergence theorem, and
assuming that pxconstant yields

g%b VeDagWc, + -8
and # (1.13.a,b)

De r
--8 = Qe0,,. Ve, ¢+ -8
B *DgaVey -

If the presence of each constituent infiuences the density, so
that p is not constant, it can be verified that the

equations are coupled through density, which then means that
the corresponding diffusion equations must be solved together
with the continuity (1.1), the momentum (t.4) equations, and an
equation of state incorporating the effects of the two
constituents and temperature, salinity of Sea-water on density:

= + T, 8, cp, ¢
4] plp A B) (1.14)

Furthermore, the energy equation (1.5), and a diffusion
equation (similar to (1.13.a3)) for salinity (a third
constituent) must also complement the above equations in order
to be able to solve the system.

It is however, quite common that the mixture of interest is a
weak (dilute) solution of one of the constituents (say
Cp<<cy) . Then, we can assume €=Cpc

(yielding cg¥t, p ® constant), so that the

second equation (1.13.b) becomes irrelevant and the
conservation of mass for the dilute solution is expressed by
the single equation

acC
-~ 4+ Geye = D¥2c + R

at (1.56)
where R and D have replaced ra/R and
DAB respectively. In this case, the convective

diffusion equation (1.15) is decoupled from the remaining
equations, Likewise, the influence of temperature and salinity
on the density of seawater can often be neglected when the
gradients of both properties are sufficiently small. To a good
degree of approximation, the ocean can be assumed
incompressible and homogeneous, as a result of which the energy
and sait diffusion equations are decoupled from the continuity
and momentum equations. Therefore, in principle, we first
solve the hydrodynamics from (1.1) and (1.14) to determine the
velocity field TU(x,t). Consequently, for given veiocity

field, we seek solutions to equation (1.15).
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1. 3 TURBULENT MOTIORS

The equations derived in the preceeding sections are generally
for laminar (orderly) flows of fluids. Most fluids become
turbulent (by the generation of chaotic motions) due to various
reasons. Turbulence in fluids may be generated as a result of
instabilities with respect to fluctuations deriving their
energy from the mean motion, wind stirring or mechanical
stirring at the boundaries, etec. The result is the random
motion of fiuid “particles” consisting of lumps (eddies) of
various sizes, superposed on the mean motion. Since the
motions are random and chaotic, a full deacription of turbulent
flows is in the reaim of statistich, which on the other hand is
strongly dependent on the structure ana generating mechanisms
of the turbulence activity,

In order to derive the turbulence equations, we proceed by
separating the fiow variables into slowly varying and
fluctuating parts with respect to a time scale T, which is
assumed to be the upper limit of the turbulence time scales.
For the variables u and ¢ in equation (1.15) we can

write

=0 T + B (x, t)
and (1.16.a,b)

¢ = &x, T71t) 4 co(x, 1)

where the quantities with overbars denote the long term (with
respect to T) averages, for example

¢ = 5‘[ c dt (1.17)
TJdo
and the primed quantities are the components with fluctuations
that are typically more rapid than the turbulence time scale T.
By definition, ¢’ =¢-&€ =z0. The turbulence equations are
then obtained by averaging the respective equations over a time
period T. Since the conservation equations given in the
earlier sections, namely the continuity (t.1), momentum (1.4),
energy (1.5) and diffusion (1.15) equations are basically the
Same types (i.e. have the similar time derivative, convective,
and diffusive terms), the averaging procedure results in
Similar terms. it will therefore be illustrative to average
only one of these, that case being the diffusion equation.

After averaging, the linear terms in the equations will
preserve their form in that they will be the same differential
terms operating on the mean quantities (since the averages of
the fluctuating parts vanish), On the other hand, the
nonlinear terms give rise to additional terms arising due to
the averaging of the products of fluctuating variables, which
in general do not vanish since the individual fluctuations of
the variables can be correlated (arising due to the common
cause of turbulence). These turbulent products mainly
originate from the nonl!inear convective fluxes and represent
the turbulent fluxes, of buoyancy in the case of the continuity
equation (1.1) [which vanishes for homogeneous, incompressible
fluids), of momentum (Reynolds’ stresses) in the case of the!
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momentum equation (1.4), and of heat or concentration in the
cases of the convective-diffusion equation (1.6 and 1.15).

we first put (1.15) into the ftux form (making use of the
continuity equation), substitute (1.16.a3,b), and take averages.
By making use of (1.17), we immedialcly obtain

ac —
== ¢ VeCO ¢ VWec'U’ = DV2E + R

at ¥ (1.18)
i.e. the same as equation (1.15) with the exception of the term
Vec U’ arising due to the averaging of the nonlinear
convective terms in the preceeding equation.

As we have noted above, the product ¢'u°’ describes the
statistical correlation of the fluctuating components of
concentration and velocity, which are expected to be strongly
correlated in a turbulent field. Because of the practical
problems discussed above, these terms are often parameterized,
using empirical formulations. ' The form of this term in (1.18)
actually suggests that it may represent the divergence of a
flux in much the same way that the molecular flux divergence
appears in (1.13). we can therefore define

Ny = pc u- (1.19)

as the turbulent flux of the matter bepresented by the
concentration ¢,

One way to parameterize this flux is to make an analogy to
Fick’s Law, and adopt it for turbulent flows (Further
discussion of the mixing length theory on which the present
approximation is based can be found in Schlichting (1968),
and Tennekes and Lumley (1972)). With this analogy, we relate
the turbulent fiuxes to the local gradients of the mean
concentration. For a turbulent fluid, the statistical
properties of which we can not fully prescribe, it is
imperative that we use a anisotropic version of the analtogy,
— £ 3ac

Y= Ry ax (1.20)

where i=1,2,3 are indices denoting the directions in three
dimensional coordinates X;., and EiJ the
turbulent diffusivity tensor.

In the sea, the smaliness of the vertical motions as compared
to the horizontal motions (i.e. the shallow water
approximation) resuits in the common situation that the
vertical stratification is far greater than in the horizontal.
Therefore, it is reasonable to expect that the vertical
coordinate coincides with one of the principal axes, and

the horizontal axes can (by choice) be aligned with the
remaining principal coordinates of the diffusivity tensor

Eij' which then reduces (1.20) to the special form
ac
N; = pc’u i = - PE; 5;7
i

(1.21.a)
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where E,;zE;; are the principal components of
the diffusivity tensor. Writing in vector form this becomes
- — -
Ny = pc’u’ = - Ee¥)cC
TEP PLE:V) (1.21.0)

where E = (Ex.cy.Ez) are the turbulent
diffusivities in the Principal coordinates (x,y,z).

The turbulent mechanism of mixing (turbulent diffusion) is in
fact much more effective than the molecular diffusion, so that
typically Ex.Ey.Ez>>D. as a result
of which the molecuilar diffusion term in (1.18) can be
neglected. Substituting (t1.21.b) in (1.18) and dropping the
overbar notation, we obtain the turbulent diffusion equation
dc - 3 dc ]

- [ - .- - -

5% + UsVc ax(E Vay’ + az(

dc

) ac
2 2 (E £,°5) + R .
Xax ay‘ zaz)

(t.22)

The sources or sinks of concentration are represented by R.

In some cases, this term stands for the decay or decomposition
of a non-conservative pollutant due to extraneous influences.
A linear form representing first order decay processes is

R = - ke . (1.23)

In the case of homogeneous turbulence, the diffusivities
are constants in space and time, and we have a simpler version
of the turbulent diffusion equation:
ac a2¢ aac aac
SE + ﬁ-Vc = Ey 5;2 + EY S-z + EZ S;a - ke .
¥ (1.24)

1.4 RELATIVE AND APPARENT DIFFUSION

In reality, turbulence constitutes a random field of motion,
and therefore the ensembile averaged equations would be
appropriate. we have so far circumvented this difficulty by
empiricaliy representing these effects within the bulk
turbulent diffusivity coefficients in time averaged equations.

Even in the case of homogeneous, stationary turbulence, an
initial reiease of concentration will diffuse at a rate which
depends on the size of the patch, so that the constant
coefficients in (1.24) are not appropriate. This is a
consequence of the probabilty distribution of different length
and time scales embodied in the turbuience fietld. At initial

stages of the spreading, the material will be redistributed
mainly by small scale eddies. As the patch size grows, larger
eddies will begin to influence it, and distribute the material

in a more efficient way,.

In addition, each random realization of the ensemble will
appear in an irregular form and will be different from other
possible realizations as shown in Fig.s t.1.a,b. The
irreguiarities are only smoothed out if we take the ensemble
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average of the process with respect to fixed coordinates and at
the same time intervals after the release; then the constant
concentration surfaces will be circular as shown in Fig. t.1.¢
(i.e. if the medium is isotropic). On the other hand, the
center of mass of the diffusing cioud of each realization may
be shifted randomly with respect to the ensemble mean center of
mads, due to the influence of eddies that are larger than the
cloud size (meandering) as shown in the first two figures, .

If the ensemble averages were to be taken by shifting the
origin to the instantaneous center of mass of each realization,
then the average clioud would look smalier than that in fixed
coordinates as shown in Fig.1.1.d, for then we extract the
influence of meandering (Fischer et s/., 1979). Note that

in fact, during the initial stages of development, diffusion by
small scale eddies, and advection by large scale eddies are
inseparable, making the definition of turbulent diffusion
somewhat arbitrary,

The apparent diffusion is that corresponding to Fig. t.1.¢,
and we should in principle use the apparent turbulent
diffusivity in the turbulent diffusion equation. On the other
hand, it is more convenient to obtain the reltative
diffusivity through experiments, i.e. that corresponding to
Fig. f1.1.d, since individual clouds can be averaged
irrespective of their relative positions.

A good measure of the spreading of a cloud can be obtained by
calculating its variance (1.e. the normalized second moment of
the concentration distribution), defined as

M ‘ﬁ - e 77
T + A (\f) (\ +
(o) ~ s
&' - ”\\
o % paaY + @& &) (+)
(») 10 N

FIGURE 1.1 Turbulent diffusion from a small source. (a,b)
Random spread of two identicul cloudy, (c¢) LEpread of the

cenuembic mean, (d4) Gpred of the ensemble mean obtained by
shifting the origin to the centeroid of each realization.
(After Fischer et al/. 1979)

42




8 teo
I c ds (1.25)
-0

where ¢ is the ensemblie mean concentration and s stands for
any of the coordinates (X,¥,2Z) measured from the centroid
of the cloud, and therefore ¢ v Oy,
Oy are in essence the length scales (standard
deviations) of the diffusing cloud. It can be verified,
through multiplication of equation (1.22) witn xe, ye,
22 réspectively and througn integration by parts that

2
1 dog”

S " 2 at

(1;25)

for each of the coordinates 8 = x,y,z, i.e. the turbulent
diffusivities are proportional to the rate of spreading.

The transformation between the ensemble mean values in fixed
coordinates and those obtained by coinciding the centroids of
different realizations is then obtained from (Csanady, 1973)
2 g 4 2 '

o =0 +m
s 8 8 (1.27M)
where § refers to the coordinates with respect to the
centroid in each relization and mg™ represents the
variance due to the meandering.

For sufficiently long time after the injection (i.e. after the
scale of diffusion becomes larger than the largest eddy sizes)
mya= becomes constant, so that it does not

contribute to the diffusivities in (1.26) ., The time required
for this to happen is typically the Lagrangian time scale
(Fischer et a/., 1979).

For time larger than the Lagrangian time scale, the
diffusivities are constant (i.e. the variance increases
lineariy with time in 1.26), and the solution of (1.24) with
constant coefficients s appropriate in this case. On the
other hand, for initial time after the release of a small
Patch, this approach is not valid, for then the diffusion is
proportional to eddy sizes. Fischer et a/. (1979) show

that in this case the Fickian diffusion equation (1.23) is
valid with respect to relative coordinates shifted to the
instantaneous center of mass of the cloud, provided that the
diffusivities are prescribed as

1 do®
= = -—-- =z q o%/3
2 dt (1.29)
This "4/3 Law” has experimentally been shown (Okubo, 1974)
to apply to a wide range of diffusion probilems (see Fig. 1.2);

it simply states that the diffusivity increases as a power of
the cloud size.
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FIGURE 1. Inhe turbulent diffusion coefficient as a
function of patch size (After Okubo,1974).

Variations to the thoery arising due to the consideration of
eddy sizes, their stochastic bases and relation to statistical
theory are discussed and interpreted with considerable latitude
in Csanady (1973) and Fischer et al. (1979). in the

following sections, we will mainly consider the cases. in which
the diffusivities are assumed to be constant,

2. SIHPLE MODELS OF TURBULEKRT DIFFUSION AND
TRANSPORT

In this Section, solutions to the convective diffusion equation
will be obtained under different initial and boundary
conditions corresponding to typical simple situations that may
be encountered in the environment. Although the real processes
in the ocean can be more complex mainly due to the pPhysical
prescription of the yet undetermined turbulent diffusivity
coefficients, these simple solutions will serve to illustrate
the basic mechanics of diffusion. These classical solutions
¢an be found in a number of basic references, including Csanady
(1973) and Harleman (1970).




Equation (1.25) is in general not very easy to solve under
general flow situations, often due to the variable coefficients
introduced by the velocity field u(x,t) determined by

the equations of motion. An alternative approach is to lump
the variability of the velocity field into the turbulent
diffusivity coefficients, yielding dispersion equations to

be demonstrated later in Section 3.

wWe consider a simple class of problems in which the velocity
field is constant with speed U arbitrarily aligned with the

Xx-axis. This case is analogous to the diffusion in a solid,
when the equations are transformed to the coordinates fixed

with respect to the uniform bodily motion of the fluid, we

will assume homogeneous, non-isotropi¢ turbulence and a non-
conservative constituent which decays linearly. Namely, we

consider the equation

ac ac alc a2¢ a2¢
=S4 U = = Ey -3 ¢ Ey oo3 ¢+ Ey -5 - Keo .
at ax X dy z 2. 1)

We define the coordinate transformations

E € E
X = (=-)V2(x-uty, Y = (-)V28, z - (5y1/2;,
Ex <y E,
T =1, (2.2,a-d)

80 that the tota! advective rate of change (left hand side of
2.1) simplifies to

ac | ac _ ax ac , 3T ac (X 3 AT ac
at ax 3t ax = at ar at ax  at aT
E dc ac (3 ac  ac
= -2 cesc s uc-) /2 oo 2
Ex ax aT x ax AT
(2.3)
and the terms on the right hand side are transforméd as
e ¢ ax 3 ax ac) a2¢
X ax€ T X 3y 3ax 'ax ax. X 3x2

(2.4)
We also set the yet undetermined constant E equal to

3
£E° = E, E, E
X~y "z (2.5)

i.e. one of the invariants of the anisotropic diffusivity
tensor. With these transformations (2.1) becomes

ac (aac . a2c aac) ke (2.6)
at ~  TaxZ T ay2 T 372 ' )

we further make the transformation
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-KT

c=4%e (2.7)
upon which (2.6) is replaced by
2 2 2
e 3I“e ace Ice
-_— = - - 4 = _ 2.8
at = F x2 * av2 ¢t 3z2) {2-9)

This form of the equation in transformed variables is
equivalent to the diffusion equation for a conservative
substance in an isotropic field at rest. On the other’ hand,
this equation is the familiar heat equation equivalently
modeiling heat conduction in an isotropic solid, for which the
classical theory provides various solutions (e.g. Carslaw and
Jaeger, 1959). We can in principle develop these classical
solutions for (2.8), and back transform them by substituting
(2.2.a-d), (2.5) and (2.7) to obtain solutions for (2.1).

We next consider the basic solution to the diffusion equation
for a point source initial condition, and show how other
solutions are developed from this basic solution.

2.1 THE BASIC SOLUTION TO DIFFUSION EQUATION
(INSTANTAREOUS POINT SOURCE)

Consider the simple diffusion equation (isotropic conservatuve
diffusion, stationary fluid)

dc¢c

-- = E & 2.9

it v (2.9)
we want to investigate the simple symmetric diffusion pattern
in the case of an instantaneous point source, i.e. of some
material injected at the point x = x* =z (x’,y’,z2*)

released at some initial instant t = 0. We seek the
solution to (2.9) with the initial condition

c(x,0)

d(x-x") S(y-y’) &(z-2*)

(2.10)

VIT VIX

d(x-X")

where M is the total mass of the substance introduced and
p is the density of the receiving fluid. Here

d(x-x*) is the Dirac delta "function” with the

important properties of

400
J d(x) dx =1

400
J F{x’)d(x-x*)dx = F(x) (2.11.a-c)
-e0
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4o
I elKX gk = 29 &(x) .
—-eo

The delta function was introduced by the we!l known physicist
Dirac in 1926, but it was later shown by Schwartz in 1950 not
to be a "function”, but rather a generalized function or
functional, i.e. a set of functions which in some limiting
case approach zero everywhere except at the retative origin
X=x’, where its value becomes infinite, Wwe can visualize a
set of functions which monotonousiy decay away from the
relative origin, such as in the case of the set constructed
from f,(x) = (aw) 1/ expr-(x-x*)2/a) with

varying values of a, as shown in Fig. 2.1. As

a —» 0, the peak at x=x’ becomes narrower and

increases in height, approaching 8(x-x’) in the limit.

The first property (2.1t.a) of the delta function requires that
the area under its curve be unity, the second (2.11.b) requires
that its integral product with another function evaluates to
the value of that function at the relative origin., The third
pProperty (2.11.c) states that it is the Fourier transform of
unity,

If we integrate (2.10) in-an infinite vo lume V.’
enclosing the instantaneous source, we obtain from (2.11,a)

‘oo
vac(x.O)dv=HIII6(x-x')d(y-y')d(z-z')dxdydz:"
. ~ oo (2.12)

yielding the mass of the substance introduced, in agreement
with the definition of concentration.

Since the source is located at an infinitely smaltl point, the
solution to (2.9) is expected to be radially symmetric.
Writing (2.9) in the spherical coordinates (r, 0, ¢)

centered at the relative origin of the source and dropping the
ci Cls g)

lo—"* d;
\- degrearing
”"-
ln L
'Fl . g
S} NG

FIGURE 2.1 f (x)=(aw) 1/2 expr-(x)2/a], the
set of functions which reduce to the delta function as a-0.
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azimuthal and zonal terms (due to radiatl sSymmetry), the
equation is
dc £ 1 9 r2 ac (2.13)
3t~ r 3p ar :
where r€ = (x-x*)24(y-y*)24(2-2°)2. The
solution to (2.13) with the initial condition (2.10) can be
obtained through various techniques, including Laplace
transforms (Carslaw and Jaeger, 1959), or similarity transforms

3s will be presented here. we assume the solution is self-
similar with the form
c =M (2.14)
in the transformed coordinates
re
n = €L’ f = 4t . (2.15)

" The transformation to the original variables are

= 172 | ¢ - 5€)
r (ng) L/(4€) (2.16.a,b)

and the corresponding cross-derivatives are

2

L) 3 r

¥ e, M. —=-y = - 4E T,

ot LAY HEL £ (2.7 d)
. .17.8-

3 3 ar

-E =0, -'-‘ = e~ = 2 '-] = 8('-')'/2,

ar aar jEt r [ 4

The individual terms in (2.13) are then calculated as

ac ac 3L . Jc In
ot af ot In at

it

2.18
= - g4gg-m-1 (nfy + mf) { !
and
1 L.X ac an 9 an dc
2 -1,-1
- - - r - — - - - - - -
r2 5p P70 = 07 ar an '™ 3r 39!
(2.19)

3
- p-m-{ bt
= L (nf“ﬂ + 5 fn)

where subscripts denote differentiation with respect to the
transformed variabte n.

With these substitutions we transform the partial differential
equation (2.13) into the ordinary differential equation
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3
fon + fo) ¢+ (- . + mPf) = O
" fan n! F * (2.20)

This equation is of second order, and general solutions can be
obtained in series expansions. However, it is obvious that we
can only obtain a similarity solution if we select the yet
undetermined exponent in (2.14) as m=3/2. Then, by letting

9 = fn + t (2.21)
(2.20) directly integrates to

- - -3/2
= fy ¢ f = A7
9 H (2.22)

lntegrating once more with use of integration factors vields
t=8Be N4 Ae" I =3/2 ¢n 4
n " (2.23)
where the first term represents the homogencous solution and
the second term is the particular solution,

For small values of n = r2/(4Et) (i.e. as

t_~% ), 'the second term grows with a trend of

t3/2, "sSince the initial concentration should decay ,

with time through diffusion, this solution can not be accepted
and therefore we set A = 0.

The constant B can be evaluated from the initial condition
(2.10). In spherical coordinates we have

] L 4 .
- I I~c(r) ar r dé rsine de
P o Y00

O

= 4w j r cir}) ar
[o]

B uad fin) 1 [ 1
4w | ng -- - (21172 4
Io £372 3 Ty "

B (2.249)
= 29D [ nl/2 ¢°N gy - g3/2 g
(o]
Therefore the solution of the problem becomes
(M/p) ré
c(r,t) = ---282 expl- ---) 2.25)
' taweny 372 ©XPLT et {
or writing in Cartesian coordinates
. a . a . 2
(M/p) (X-X")C¢+{y-y )Ce(z-2")
cix z, t)=-----=- eXpP- (--m-----oo.LoCo 2T TLCL .
‘ Y. 2, ) (‘ﬂEt)37a 2] ‘ AEt ,




The instantaneous point source solution (2.25) decays as

t-372 4pg goes to zero everywhere as t —» e, At

any fixed time the solution decays away from the relative
origin as exp(—nra) (i.e, the spatial distribution is
Gaussian). in fact, the behaviour of the solution can be
visualized with the help of Fig. 2.1, replacing a =

4Et. The shape of the function with respect to the radial
distance measured from the source (instead of x in Fig. 2.1) is
the same for any given time, although the time rate of decrease
faster (as -3/ ) than that would correspond to Fig.

2.1 as a result of the three-dimensionality of the probiem. At
any time, the constant concentration surfaces (of say czcy)
are spheres,
The solution in the non-isotropic non-conservative, uniform
flow case can be obtained by simply making use of (2.2.a-d),
(2.5) and (2.7) as

M x-x’-Ut) 2 (y-y*)2 (z-27)2
c:--_-{‘_’37a-exp_[£ ..... --1-4!!-!-1-4!——_-1_0'(‘,
- (4WEL) S AE,t 4E t AE,t LB
where E3zE,E E,. In this case, the

constant concentration surfaces are ellipsoids.

The variance (cf. equation 1.26) defined with respect to the
center of the patch is

[+3 T e a——- X
Yoo - (2.28)

where 8 standg for any of the shifted coordinates
X=X-X’-Ut or y=y-y’ or z=z-z’ in equation
(2.27). Noting that

I’” r2 exp(-re/a) dar
~on
400 2
J exp(-r</a) dr
-on

(2.28) evaluates to (for each axis)

oy, = (2E,1)1/2,
- 1/2
Oy = (asyt) v
0, = (2E,t)V/2
. R f2.30.a—c)
in the case of the instantaneous point source so ution
(2.31). If the medium is isotropic, the sprgad is obviouslty

symmetric in all directions with o = (2£t) /2,
Note that these results are in agreement with equation (1.27).
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2.2 CONSTRUCTIOR OF ELEMENTARY SOLUTIONS FROM THE
BASIC SOLUTION

We can construct other elementary solutions from the basic
solution obtained above, through convolution operations.
For example consider the case of an initial concentration
distribution C(x) at t=0

€(x,0) = C(x) = C(x,y,z) . (2.31)
Consider the simple diffusion equation (2.9) written as

L(c) =0; oL =2 Eve
- T oat ) (2.32)

Let ¢(x’,t) be the basic solution of (2.32) for an
instantaneous point source C(X,0)=8(x-%x")8(y-y"’)
4(z-2*) disregarding the dimensional coefficient

M/ep in (2.10). The solution to (2.32) with the initial
condition (2.31) is constructed as

4o
c{x,t) = C(x’ E X-X’,t) dx*dy’dz’
( ) Iff Rl { ) 4 (2. 33)
o8 .
where C is (2.26) normalised with M/p. The proof
is given as follows, Operating on (2.31) yields

4o
L = C(x’ C) dx’ dy’ dz* = 0
(c) III (x’) L(c) dx y z (2.34)
~e0

since L operates on x and t only and ¢ satisfies
(2.32). Evatuating (2.33) at t=0, we obtain from {2.10)

400
W0) = C(x*) 8(x-x’) dx’ dy’ dz* = C
¢(x,0) IJI (x*) (x-x") x 1 4 z (X)(Z.SS)
-0

by virtue of (2.11.b). The expression in (2.34) is therefore
proved to be the solution. The method c¢an be applied to
arbitrary initial conditions, exampies of which are given
below.

2. 3 INSTANTAREOUS LINE SOURCE

The concept of using the basic solution to construct other
solutions is applied to the diffusion from an instantaneous
line source with the initial condition

€(x,0) = (m’/p) d(x-x") S(y-y") (2.36)

i.e. a point source in two-dimensions, located at Xz (x*,y")
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with mass m’. Comparing with (2.10), the source strength
m® is defined according to

m’° = M é(z-2*),

+oo
I m’ dz = M,

(2.37.a-¢)

m’ dz = dw,

Such that m’ is distributed along the z-axis, with its
total influence conceptualiy equalling M. Applying (2.38)
we obtain

400 a
m’ r ’

. = - - - -f .- [P VE toym d 'd *dz’

c(x,t) III p(!wE&?ﬁexP '4Et’6(x X")é(y’-y")dx’dy’dz

(2.38)
where r2 - (x-%")24(y-ys)24(2-27)2,
using (2.11.b) and integrating further yields the two-
dimensional solution

. -y 2 -y " 2
clx,t) = ;-'1'-- exp-({XIXI1H oy T, (2.39)

The solution in the more general case (anisotropic, linear
decay and uniform current) is easily obtained through the
substitutions (2.2.a-d), (2.5) and (2.7).

An alternative interpretation of the convolution method rests
in equations (2.38) andg (2.37). We are equivalentiy summing up
the influences of a sequence of point sources with strengths

dM along the z-axis, to obtain the line souce solulion,

Note that the instunluneous iine source solution decays as

t7! 35 t —» w, at a siower rate compared to the

Point source solution. At any fixed time the spatial decay of
the solution is again Gaussian.

A better measure of the spread in each direction is obtained
from (2.32) vyielding

- - 172
Oy = 0y = (2EU) (2.40)

i.e. the same as in the case of the point source solution.

2.4 TNSTANTANEOUS PLANE SOURCE

We next consider an instantaneous plane source

€(x,0) = (m~/p) S(x-x"*) (2.41)

where m" represents the source strength
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m* = m' &(y-y"), (2.42)

in comparison to (2.36). The solution can 39ain be obtained by
the same tgchnique outlined in Section 2.2 as
=3

- -z
m r
c(x,t) = || ---~--~ eXp-(---) &(x’*~x"’) dx’ dy’ dz*
ke ”J. plawEt) 372 SXP-lgot) 8¢ ’ Y
-
(2.43)
where ;2 g (X-K')2 + (y-y')2 * (z-zv)a.
Integrating further yields the solution
ey 2
m* (X-x%*)
C(X,t) = —-wu. eXP = mwecaaia
( plawEr) 172 %P AEt
(2.44)

The one dimensional solution can also be obtained from a
summation of the two dimensional solutions. The solution
decays as t71/2 3¢ jarge times, i.e. siower than the

Lwo and three dimensional instantaneous sources. The variance
for the solution is again o,=(2et)1/2, :

2.5 CONTINUOUS POINT SOURCE

we can use the above methods to construct solutions for
continuous sources i.e. sources from which a substance is
injected continuously, ether for a certain period or for an
infinite time. The construction technique of Section 2.2 s
applicable in these cases, with summation of delta function
INPUts with respect to time. However, duc Lo ¢ Lo plex time
dependence of Lie Lin_ai¢ ENINTLICNS, we must apply the summation
durectly on the general case (2.271). ‘

Consider the continuous point source, starting from an

initial time t:to and continuing up to time

t:t'. (Fig. 2.2) with a rate of mass injection

Q@ = dM/dt. We idealize the situation as a summation of an
infinite number of point sources progressing in time, each with
a mass injection of dM per unit time increment dr,

A

Q

e oo o = e -

2
e

- -
.- - -

4
Y
o

° 4T o

FIGURE 2.2 Idealization of the continuous Point source as a
series of instantaneous point sources.
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We assume that the source is located at the origin X=y=z2=0.
The solution can be constructed as

te te
c = I cy{x, t-7) dM = I qQ cyix, t-7) dr
to to (2.45)

where c, denotes the solution for the instateneous

solution (i.e. equation 2.27) divided by M, and t, 3

the upper limit of integration in time, If we are interested
in the solution for the time interval t (t(t,

(during continuous injection), we must integrate (2.45) up

to t,=t. On the other hand, if we are interested in

t)t’ (i.e. after the continuous source is stopped)

equation (2.45) must be integrated up to t.:t'.

Defining

E E
AZ=gBy2, uazézza' 3£, € €,

y (2.46)
and substituting (2.27), the solution (2.45) is written as
jt' Q exp Ix-Ut-71312+224p
=L ErRESTeTE & 372 T e e T B
wE(t-T 4E, (t-T
toPIATE(1-7)] x(1=7) .

Note that a continuous point source with varying injection rate
qQ(t) can aliso be taken into account by taking qQ=q(t-T1)
in this equation. With the following definitions

2 2,132,412 LA
r = XS+ + U=, ; S meceocasecas 372
2lE (t-T
(Ex(t-T)) (2.48.3-e)
v = XU/(2E,), Q = (U2+akE,) 172,
B:PQ/("EX)
equation (2.47) can alternatively be written as
a.¢. £ 2, 8
¢ owd?2 k. E233727 f exp-[1= + 23] dt
2pw EJE r
£ CEyhel fo £ (2.49)
where L,=0(T=t,) and [, =L{T=t,).
Note that in the case t, =t (i.e. tety)
;.:n 5
In order to integrate (2.49) we define
B ’ 1]
p:;+£, q:;-i (2.50.a,b)"

and consequently
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B P-q 2.50.c,d
P2 - q% = 4, -5 = ----- £ r D
t P +q
Differentiating (2.50.a,b) gives
d 2
A AR R
(2.51.a,0)
d 8 2
e m -2 - -5 = <P_
at S 14 pe+q
and therefore
p dp = q dq . (2.52)

The integral in (2.56) can be formed into

02
I exp -(L% ;2! 9t
‘ {2.53)
=3 I lexp(-pZ+28)+exp(-q2-28)} dr

or, using (2.51.a,b)

1 p* 2 1 q 2

H (aOI)eXP(-p +28) dp + 3 (BOl)eXP(—q +28) dq
(2.54)

which, with the help of (2.59) and (2.57.¢) becomes

1 2 ! 2
5 exp(-p<+2p) dp + ; exp(-~q©-2B) dq

(2.55)
As a result, the solution (2.49) becomes
Qe¥ Py . q
CSomoocmas- 172-te*2Brerrc p)| %e 2Biertc q)f ©)
8wp(EYEX) r P, * (2.586)

where evaluations are between the limits Po=PILs ),
q,=a(Lsy), P,=pP(L,), a,=qll,).

Note that the transient solution (2.56) in the special case
U=k=0 (B=0) becomes

Q - r r
Cc = e — e ——— ~-ferfc--—~=cmmmeeao terfC-~~~—ccce e e =
Qwp{EYEZ)"r 2[Ex(t-to)] C2(Ex(t-tw)}
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-1

FIGURE 2.3 Error function and complementary error function.

In the above, the error funct:on is defined as

2 u
2
er?t u = ;[73 J‘ exp -s das
0 (2.58. a)
and the complementary error function as

erfc u =1 - erf u (2.58.b)
which are sketched in Fig. 2.3,
In the case of continuous injection, it is possible to have a
steady solutions, which is obtained by letting t,=t,
to—m in (2.56). The lower limit of the integral
(corresponding to T=1,) becomes ;ozo

and the upper limit [ -e in this case, and a
definite integral results, yielding the steady state solution

S mcce-ec-o - exp -[2B-v 2.59.a
pﬂn(EYEz)'72r P -l(2B-v]) ( )
Consider the case k=0, then (2.59.a) becomes

= c*%-210?

L —

H
e PpLUE
C% '-—.-U—C

E'Eﬁ‘e"':l—

FIGURE 2.4 Solution for a continuous point source
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Q u(r-x)
5 m—————— et ) ] (2.59.b)

These solutions are shown in Fig 2.4. At long distances away
from the origin along the x-axis, i.e., for X>>»\ and
X>>|, we can simplify and (2.48.a) to

Y 2242 1 024p2

r‘ - X Ol Qu X l ¢ e~ ~ X ¢ - comcna
( ( “Z )

X
{(2.60)
so that (2.59.b) can be approxlm;ted as
2 2
Q U vy z
2 CaogSEESERREE GKP o [==i( - § ~~) ] (2.69)
PAT(E E,) 172x A E,  E,

i.e. the distribution becomes two dimensional at large x.

At large distances along the x-axis the solution has boundary
layer structure, with diffusion occuring transverse to the
fiow, and negligible diffusion along x. A particle released at
the origin is swept to any point x in a time duration of

t=x/U; which upon substitution into (2.68) yields the

familiar (two dimensiona)) instantaneous line source solution
(2.44) with m’U=Q, t=t, in this case the line source

being oriented along x. It can be verified that this is
equivalent to the solution of the system
L 2¢ 2%¢ FL
ax Y ayZ Z a3z
¥ (2.62)

2.6 CONTINUOUS LINE SOURCE

Solutions for the case of a continuous line source aligned
with the z-axis (at x:zO0, y=0) with an injection rate of

qQ°’ = dm’/dt can be obtained either by summation of

continuous point source solutions in space or the summation of
instantaneous line source solutions in time. With the
definitions

E
r2=x24)2, Aazéxya. €02 (t-T)
y (2.63.a-c¢)
and v, 0, 8 as defined in (2.48.c-e), the summation of
instantaneous line sources yields (Harleman, 1970)

€ 2
€ = g=------- I ° ! exp -ree?7) ae
T oaweiE e 172 ] | € € (2.64)

where €£,=€(T=t,) and ¢,=¢(T=t,).
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Wb

This general form can be integrated numerically. Note that
in the case t,=t, €,=0.

The steady state solution is obtained by letting to-o-.
in the case t, =t, this is
q‘e?

(2.65)

where‘Ko is the modified Bessel function of the second
Kind and order zero. For large values of r (i.e.
B>>1/2) we can approximate (2.65) as

. S exp -[2B - v 2.66
ﬂp(wBExEy)‘72 P - ) ( )

2.7 CORTINUOUS PLARE SOURCE

Consider a continuous pilane source (an assemblage of continuous
line sources or instantaneous plane sources) in the Y-Z plane
positioned at the origin x=0. Let the strength of the source
be q" = dm°/dt. Defining

t-v

F = & y = (;--)1/2
aE,

(2.67.a,b)

and y, Q, B as in (2.48.c-e) the solution can be
obtained by the methods outlined above, resulting in

aq.ev Y BZ
€= -=g-- | %exp -[y2 &+ 5] dy .
h 2
pwIQ Yo Y
(2.68)
Comparing with (2.49) and (2.56) the solution is evaluated as
oV
e
c = 9---[exp(4zn)(erfc p) p°oexp(-20)(erfc q) q°]
. 2p0 p. Q.
(2.69)

where P:9,Pp4q5,P,.q, are defined the same
way as in (2.57.a,b) replacing £ by vy.

2.8 INFLUENCE OF FINITE SOURCE DIMENSIONS

The influence of finite source dimensions can in principle be
accounted for through the superposition techniques outlined
above. As an example, we consider the case of an instantaneous
line source confined in -h<z<h at x’z0, y’=0, For brevity,

we consider the isotropic, conservative non-convective case.

In this case, the solution (2.38) is modified accordingly, to
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+h m’ re
Cc = I-h ;;;;E;;37a exp - ;E; dz (2.70)

where £2:x24y24(7-2°)2, Making the
substitutions

2°) = co=-- . az* = -(4E1)1/2 ¢
. (en 172 ( : ’ 2.7 b
yields the solution (2.71.a,b)
& m* — xZ4yl I“('h} exp 2 o
= oe378:c3 = SaE -
w REt 4Et
’ TR (2. 71.¢)

- m exp xa’ya [er? erf Z-D )]
BpwEL AET (aey) 172 (sev) 1727 -

Note that the solution is symmetric about z:=0, since
erf(-r)zerft(+r),

2.9 IRFLUERCE OF DPOUNDARIES

Oon impervious boundaries .the diffusive flux must vanish normal
to the boundary surface,

NeVe = O : (2. 72)

where:a in the unit normal to such a surface.

In some simple cases, the solution with this boundary condition
is equivalent to superposition of mirror images with respect to
the boundary of the unbounded solutions, To illustrate this
method consider an instantaneous point source positioned at
Y’=2’=0 and x=L where x is measured perpendicular to a

boundary at x=0 and in the Y.Z plane. The solution is

) " y2422 (x-1)2 (xe1)2
[ et 372€Xp- ----- [exp- -;-;--OEXP- ------ )

(2.73)

where the second term is due to an image at x=-L. Note

that the solution is symmetric with respect to x:z0 and if the
Source is located next to the boundary, the concentration is
increased to twice the value of the unbounded solution, In
more complicated cases, the solution is obtained through
superposition or other mathematical techniques., Cohsider an
initial vertical distribution ¢ {z) in a two

dimensional uniform flow with finite depth as shown in Fig 2.5.
The initial condition is

.2,0) = s
€(X,2,0) = co(z) 8(x) €, T8

The diffusion pattern is governed by a convective diffusion
equation, which, upon transforming the x coordinate by
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FIGURE 2.5 Diffusion in confined flow

X = x - Ut (2.75)
can be written as

e _ . a2¢ . 32¢

at X axZ Y 322

(2.76)

The boundary conditions are

ac

-- = 0, on z = O, H, (2.77)

9z

by virtue of (2.72). A Fourier cosine series solution

nwz
¢ = ig ¢.(X,t) cos ---
n=o0 nl 1 H
(2.78)

is assumed, satisfying the boundary conditions (2.77).
solution satisfying (2.76) is then obtained as follows

1 (x-Ut) 2 o > nwz
------- exp- -------3  a, exp-(A,“t)cos---
(nwE ) 172 AE 1 Tnzo On SXPT A7)
where
2 _ 2
A = (nW/H)C E,
and

H
o J.o co(z) dz, n=0

Tl

H nwz
I co(z) co8 ---dz, n=1,2,....
0 H

3
Iaife

The

(2.79.a)

(2.79.0b)

{2.79.¢,9)

Note that each term in the series solution (2.79.3) decays
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in a time of T, =1/:,2=(H/nm) 2/,
approximately, except the term n=0, which survives as 2
dominsn‘ erm. Therefore, at large times

(t>>HS/(w E>)). the solution is
a, (x-ut)2
TAWE, 1) 172 ©XP = “=e-i- ke. 503

i.e. uniformiy distributed with depth and equivalent to that of
an instantaneous plane source with strength 8,=m"/p
(cf. equation 2.44), /

2. 10 INFLUENCE OF VARIABLE DIFFUSION COEFFICENTS

As noted in Section .4, the assumption of constant diffusivity
i8 actually inappropriate shortly after the reiease of a small
source. Another reason for variable diffusivities can be the
presence of a so0lid boundary, because near the boundaries the
structure of the turbulence is modified and eddies decrease in
Size. Furthermore, the texture of the boundaries can also be
important, since the turbulence field near a flat surface will
differ from that near a rough surface. Modifications of the
solutions which describe ‘the initial growth stages and
diffusion near boundaries have been obtained by various
investigators, for example by Joseph and Sendner (1958), and
Okubo (1962) in the case of instantaneous 1|ine sources,
walters(1962), Sutton(1953) and Smith (1957) in the case of
continuous point souces, and Pasquill (1962) in the case of
continuous line sources located on solid boundaries.

For these more advanced diffusion theories, the reader can
consuilt Slade(1968), Frenkiel and Munn(1974), Csanady(1973) and
Fischer et al/. (1979).

3. SHEAR FLOW DISPERSION
3.1 INFLUENCE OF VELOCITY SHEAR

The dramatic effects of velocity shear will first be
demonstrated by a simple solution due to OKubo and Karweit
(1969) who considered the linear velocity profile

uz=u=uU=+ay + pz (3.1)

for the x-component of velocity and obtained a solution to
equation (1.25) for an instantaneous point source at x:=0, y=0,
2:0 and time t=0. The 3o0lution was obtained as
M e y2 22
piawet)372 P Tle t el Ayt Y
Pl € y z (3.2)

where

1
€ = X ~ Ut - é fay + Bz)t, (3.3.a)




2,2
= E 1+ &%t
= x ! . (3.3.b)

EyE,

(3.3.¢)
and

2 . 2 2 .
¢< = (a EY t BTE,)/(12E,: (3.3.4)
It can be seen from the above that shortly after the release
(0t)2<<1 the influence of shear is unimportant and

the solution is very similar to the case without shear in
(2.27). On the other hand, for Iarge time (Ot)e>>l.

the peak concentration decays as t~ /23 much faster

than the uniform flow solution with t~3/2 gecay. 1In

effect and by virtue of (3.3.b) the effective diffusivity is
considerably increased for large time, due to the elongating
influence of shear. Als0o note that for large time we can
approximate (3.3.b) as

’ ; t 30,2
2 _ 1 9%99%._
Eg ® Ex (#1)° = 2 at (3.4)
which vields
2
2 = - g, #2403
3 3 X _ (3.5)

and (3.4) can alternatively be expressed as
3¢ 2/3 . 473
E, & (-~~~ o
ZEX, € (3.6)
which is analogous to the "4/3 Law" (cf. 1.29) for relative
diffusion but arises in the much different context of shear
flow.

€

The above example displays the important and convenient resutt
that the effect of shear can be incorporated into "dispersion
coefficients" in anology to the diffusivities.

The shear flow dispersion behaviour differs considerably when
the flow is confined between boundaries, for examplie in a
shallow sea, where the no flux condition (2.72) applies at the
bottom and the free surface. The following method is based.on
the early analyses of Taylor (1953, 1954), Aris (1956), Elder
(1959), Bowdeﬁ(i965) and Fischer(1967). The formuiation of the

shallow water equations will closely follow that of Nihoul and
Adam(1974). We start with equation (1.25), or alternatively,
ac - 3 3 dc ’
== ¢ VeUc + --wc = --Ez—— + T - Ke
at 9z Iz “az (3.7)

where use has been made of the continuity equation (’-3) and
V=(3/3x, 3/3y) and U=(u, v) stand for the

horizontal components of the gradient and the velocity vect‘ors.
W is8 the verticatl velocity and T represents the
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horizontal diffusion terms T=VeE e¥c. we . :
assume that the horizontal velocity and concentration can be
separated into vertically averaged and fluctuating (deviation
from the vertical average) components

¢C=¢ +c"

uzi o+ ue (3.8, 8. b3
where for instance

- 1

c = " I-h ¢ dz ., (3.9)

The free surface and the bottom are respectively defined at
Zz=n and z=-h, bounding a total depth Hzn+h.

Integrating the continuity equation (1.3) in the vertical
yieldg '

2
g Hu = . ®
ST VeHu o] (3.10)

Then, integrating (3.7) in the vertical and makKing use of
(3.10), we have

3¢ 3 - 1 - - -
=< + 0oVC = - gv-Hﬁlc' + T - k¢

n (3.11)

Subtracting (3.1¢) from (3.7) gives

dc~ = dc* z
~-= 4+ Qe¥c" + ﬁ'cvc' + W= & ﬁ'ovc
at 92z (3.12)
] ac" 1 T o )
= --Ez--— ¢ T™ ¢ -Felil"c" - Ke*" .,
3z “az H

‘ b
we assume U (and therefore U and U') are Known;
equation (3.12) can then be solved for c". With the
correlation l=c" determined, the dispersion equation (3.11)
can then be solved for <. using some simplifying
assumptions first introduced by Taylor (1953). Through an
order of magnitude analysis it can be shown that the basic
balance in (3.12) is

-t -
u*eVec = --g_---
az Zaz ' (3.13)
which is much easier to integrate.
The basic assumptions are that c"¢<e, lU'l:O(lﬁl).

w=O(1U"H/L), where H is the depth and L is the
horizontal scale. Defining

- b .
c*/E = ofe), 1u=/81="0(1)

- (3.14.a-4d)
w/ju*} = O(n), H/L = O(4)
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where e,u,d are small numbers <<O(1). The
orders of each term (written in the same sequence as 3.12) are

n - |
O(1) + O(1) + O(1) + 0(3) + O(E’
(3.15)
0:Z 1) 4+ ofly + o(1) » ot

T THU & L v’

where U is a velocity scale and Ey stands for the
horizontal diffusivites Ex' EY. Shear dispersion
effects obviously become important only when diffusion time
scales are comparable with convection time scales i.e. E
and Ey = O(HU). The decay term O(KL/U) is often
small or at most O(1). Therefore the last term on the left
hand side and the first term in the right hand side (the terms
of 0(e™ ') and 0(s~Y)) dominate,
yvielding (3.13).

z

Equation (3.13) can be integrated twice, resulting in

z 'l y4 N
c"(z) - ¢"(0) = (J i J u® dz’ dz") « 9¢ .
-h ®z J-n : (3.16)

Then the dispersive filux term on the right hand side of (3.11)
becomes

1 s
§ = - - Ye¢ Hu"c"
H
t (3.97)
n z 1 ¢Z"
ERR - M I ﬁ-j -- I U" dz’ dz" +9E dz
H -h -n Ez J_p
19 n z 1 2 ac
= - - o= u;* - - u." dz’°dz"dz ---,
H ax; J-n -h €, J-n J 3x ;
the last expression being written in indical notation, with
x;, for i=z1,2 representing x and y directions respectively.

Note that the integration of the second term on the teft hand
side of (3.16) does not contribute to (3.47) since ¢"(0) is
constant.

The form of (3.17) suggests that we can express this term in
linear proportion to the tocal gradients of mean concentration

in analogy to the FicKian expression (1.21), i.e.
S 1 2 H K ¥ (3.18)
T H ax; i J ax '

80 that we can write
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M z z"
xij = ﬁ I N u;" J -- I uJ dz’ dz* dz

E
-h "z 7-n (3.19)
where Kij is the horizontal dispersion tensor.

Note that the dispersion terms in (3.18) are generally
anistropic, depending on the three dimensional structure of the
integrated velocity components. Making the substitution (3.17)
and dropping overbars, equation (3.11) describing the
dispersion of vertically averaged concentration ¢ becomes

ac - 1

3t UeVe = i V. HQ-VC - ke (3.20)
where

g:e‘sziJOEi 65.’ (3.2')

for i=z1,2 where xi. is the dispersion tensor,

E, standg for the vértical averages of the horizontal

turbulent diffusivities Ex and Ey (in principal coordinates),
and ﬁi is the total dispersion tensor. The

disper3ion coefficients K]J depend on the variable

current distributions, and therefore it is often not possible
to write either x;; or £, in principle

coordinates, since the orientation of these coordinates are
subject to change with horizontal Position. We must therefore
use the full anisotropic form of (3.20). Since the vertical
assymmetries of the current and concentration profiles
contributing to (3.19) are predominant, it is natural to expect
that ﬁi- ~ Ki‘ and therefore to neglect the

turbulent diffusivity. Note that if the depth variations are
small, we can write (3.20) as

ac -

== ¢+ Us¥c = v-é- ¢ - K¢

at v kv (3.22)

The reader is referred to Fischer et al. (1979) and Nihou)
and Adam (1974) for examples of two-dimensional dispersion.

3.2 LONGITUDINAL DISPERSION

If we consider unidirectional steady flows in the x-direction
that are bounded in a ¢ross sectional area of A, and

negliect the decay term, 1t can be verified that the
corresponding equation (3.20) becomes

+ 1 A(K E )aE
- % g o= N O o¢
at 3x A ax . X Txlag
(3.23)

where u and ¢ are respectively the sectionally averaged

velocity and concentration, Ey the sectional averaged
longitudinal turbulent diffusivity (in the flow direction).




Ky = - i I u*c* dA
A

ac 3.24
a: (3.24)
is defined as the Jongitudinal Jdispersion coefficient where
€ =x - Ut (3.25%)
and ¢” is solved from
w22 g Aen L d L act
x 3y Yay 3z Zaz ° (3.26)

in analogy to (3,13).

With this approach, Taylor (1953) soived the dispersion probliem
for shear flow in a pipe, taking the laminar equivalent of
(3.26) written in cylindrical coordinates, from which ¢"
is calculated for laminar velocity profiles. Then he
determined the longitudinal dispersion coefficient from (3.24),
yielding

. Rzuma

x = 1520, (3.27)
where R is the radius of the tube, Up the
centerline velocity and Dr the radial molecular
diffusivity, In his later work, Taylor (1954) extended his
analysis to the turbulent shear flow in a pipe. Using the
Reynolds analogy, which states that the transfer of mass,
heat, momentum and turbulence are exactly analogous, he was
able to relate the concentration and velocity profiles to the
turbulent diffusivity, and obtained

E, =K, +E, = 10.1t R u
L X bt 4 [] (3.28)

where u, is the shear velocity (defined as
u,=(t/e) /2, 1 being the shear stress).

Note that (3.27) and (3.28) constitute two different ways of
writing the dispersion coefficient. The difference implies
(considering the turbulent equivalent of (3.27)) that the
cross-stream turbulent diffusivity can be expressed as
En.=aRu,, where a is constant. In fact

Taylor (1954) obtained (3.28) as € =(10.044+0.06) hy,
(a=0.06), showing the negiigible contribution of the
turbulent diffusivity.

Elder (1959) applied the same technique to two dimensional
unidirectional flow with infinitely wide horizontal extent and

constant depth h. in this case (3-24) becomes
ac | W2 . £ a2c
at ax L ax2

(3.29)
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where E /=K, +£, and

1 h z z®
K, = - - I u* I - I u® dz’ dz* d»
X hJo 0 Ez o
(3.30)
and for a logarithmic¢ velocity profile
EL = 5.93 hu, . (3.31)

is obtained, Note that if we use the non-dimensional variables
n=z/n, &=U"/0, e : Ey/E,,

(3.32.a-¢)
where
’ h
0,2 = u*2 = E J u*? az,
{ oh 9 (3.32.4,¢)
E, = = I £, az ,
. z h o
we can also express (3.30) as
nég 2 ,
Ky = --=¥- 1 (3.33)
Ez
where
i N4 peN -
I = - I [ ] J ; I & dn’° dn" dn
0 o o (3.34)

Fischer at 8/. (1979) ‘note that the dimensionless integral

I has values of 0.05-0.1 for most practical flows,

80 that it may suffice to take I=0.tf. The rms

amplitude of the velocity deviation from the mean is lumped
into the parameter Oy, and E, is the mean

vertical diffusivity in (3.3%).

Bowden (1965) considered various velocity and vertical eddy
diffusivity distributions and showed that for those cases
considered, values of E; /hu, (cf. equation 3,29)

ranged between $.9-25. On the other hand, observations in
natural water courses of limited width indicated considerably
higher values: For example Fischer (1967) reported values of
E /hu, in the range 50-700, and to account for

the large difference with theory, it was proposed that lateral
(transverse) shear effects not considered so far could have
caused the disperancy. Fischer(1967) has in fact argued that,
since the transverse mixing time scale in wide channels should
be larger than the vertical mixing time scales, transverse
shear could have a more predominant effect on iongitudinal
dispersion. This is an apparent paradox, Since with increasing
widths we do not apparently obtain the case of the infinitely
wide channel (the i#0o dimensional case), but has since been
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resolved through both theory and experiments.

wWith this motive, Fischer (1967) considered the ilateral shear
acting on the vertically averaged velocities and first,
averaged the velocity distribution vertically as

- 1
Bny) = ooos utty,z) az = --To
AN TTT N niy) (3.35)

where u® is the deviation of the velocity field from the
cross-sectional average u, and h(y) is the lateral
depth variations, By requiring that the T®" terms in
equation (3.12) bailance the left hand side of (3.13) instead of
the vertical diffusion terms, the longitudinal dispersion
coefficient is then calculated as
O 4 1 -

B, 8- & f av(r) I ESnive) qQ"({y*) dy’ dy"~ dy

) o oy o (3.36)
where E, is the transverse eddy diffusivity, w is
the widrh and A the cross-sectional area of the channel.

In actual water courses, a number of oiher effects modify the
dispersion, such as the actual three-dimensional channel c¢ross-
sections, secondary flows, channel irregularities etc., so that
some empirical judgement enters the dispersion formulations.
Considering these effects, Fischer (1975) gives an estimate of
the longitudinal dispersion coefficient in analogy to (3.31) as

E 0.0011 uZw? (3.37)

I, = X hu, .

where u, w, h are the mean velocity, width and depth of the
channel and u, the friction velocity. Reasonable

agreement with observations is reported (Fischer et

al., 1979). In laterally confined flows such as in rivers,
estuaries and continental shelves, the transverse mixing
effects are rmportant and should be taken into consideration.
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FIGURE 3.1 Longitudinal Dispersion coefficient in a
rectangular channel (After Taylor, 1974),.
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While Fischer’s analysis accounting for transveérse mixing
indicates that these effects c¢an increase the dispersion,

it provides tittle insight into the probiem of fongitudinal
dispersion due to three-dimensional velocity and concentration
distributions. Taylor (1974) has considered the turbulent flow
constrained by both horizontal and vertical boundaries of
rectangular cross-section, and has obtained exact solutions for
velocity and concentration distributions, from which the
longitudinal dispersion is calculated (from 3.25). Although an
oversimplifying assumption of constant turbulent diffusivities
has been used, Taylor’s(1974) results show increasing
dispersion effects for increasing aspect ratios as displayed in
Fig. 3.1. Here, the non-dimesional variables are defined as

2 U_2n
LV Tez Up©h /€,
2 2 (3.38.a,b)
Tcn = ICZ = [‘zlgz = QEEY
TCY w /Ey w EZ

where Um is the maximum (centerline) velocity, h is
the height and w is the width of the channel, anda
Tez 3nd Tc are respectively the vertical and
lateral mazing time scales.

The infinitely wide channel case (two-dimensional flow) is
shown by the dotted lines Fig. 3.2 and corresponds to

€ =8.46x1073u ®n%/E, (wnich is in

analogy to (3.31), but has a different form due to the
assumption of constant Ez). Note that the dispersion
coefficient for the rectangular section (solid tine) does not
approach the two-dimensional SO0luUtion a8 wee

(Tc'»O) and in fact differs by a large factor from this

case. The three-dimensional problem includes the lateral shear
effect, which is present no matter how wide the channel, while
the two-dimensional problem has no such effect by definition,
Comparison with various field and laboratory data indicates the
increasing trend with increasing Te! values, in spite of

the different flow geometries and subjective evaluations of the
diffusion coefficients. .

3.3 DISPERSION IR OSCILLATORY SHEAR FLOW

The analysis of dispersion in oscillatory shear flow is more
complex than the steady unidirectionail flows considered above,
mainly due to two reasons. Firstly, the unsteady and
convective terms in (3.12) must be Kept in addition to those
already appearing in (3.13). Secondly, oscillatory motions
create phase lags between concentration and velocity
distributions both in space and time. However, assuming a
single frequency of oscillation and by averaging the equations
both vertically and in time, a mean dispersion coefficient in
analogy to. Taylor’s(1954) hypothesis for unidirectional flows
can be defined as
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1
2 emee- < u'c®* »> (3.39.8)

where the velocity and concentration are decomposed into
vertically averaged and deviational components

€ = T(t) + c*"(z, )

- 3.39.b,¢
U = uft) + u"(z,t) ( u

following the notation of the earlier section, and where

t
€ = X - J' u(te) dt- ' (3.39.d)
(]
represents a coordinate transformation to the time and space
averaged center of the patch. The angled brackets imply time

averaging

1 o7
<X> = - I X dt (3.39.e)
Tdo

where T is the period of the oscillation.

Bowden (1v65) investigated the dispersion coefficient in two
dimensional oscillatory flow, but because he used equation
(3.13) without due concern for the unsteady terms (for the
1imit Twe), he obtained a longitudinal dispersion
coefficient that is one half the value for steady
unidirectional flow. The ratio of 1/2 arises because of the
Phase shift in time between velocity and concentration.

Okubo (1967) investigated the Same problem, specifying a
shear profile with velocitly increasing linearly in the verticai
and which has both fluctuating and steady components

z ., 2w
u = (B) (Uo + U sin ;— t) (3.40)

where Ug and U are surface velocity amplitudes and

T the period of the oscillation, Okubo obtained solutions
through Aris’ (1956) method of moments, and for this case he
expressed the dispersion as a functional representation of

<E;>» = f(U y U, b, T, T
L (Vo ¢ Te) (3.41.a)

where
- ne
T = h /Ez

[ (3.41.0)

is the time scale of vertical mixing. He showed that the
effects of steady and oscillatory parts of the motion on the
longitudinal dispersion are additive (superposed) such that

Ey >4 = (Ey)a + <E,; >
L7t ( L’s L70 (3.42)
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where the subscripts t, s and o denote the totil, steady and
oscillatory contributions respectively. Okubo (1967) obtained
two limits for his solution:

2
U, T 120 U T
= =9--C [y & —C5 (=-22)2), for TeeT
R I PRI AL e
and
2
u, 2T 120 U
= Yo T¢ 10 U a2
Lt = TyasT v 355 ()71 for TosT (3.43.a,b)
when the flow is Steady (U:=0) the equivalent value is
v, 2T
(E g = -2--¢
L' 7 Tiao (3.44)

(the solution for this case of steady flow with linear profile
can also be found in Fischer et a1, 1979, p.8S5). On the
other hand, the oscillatory flow dispersion coefficient in the
case of equal amplitudes with the steady case (U=U,) as
related to (3.44) are

<€ > T
?ELJQ = 3.04 (z0)2, tor TecT,
L"s & (3.45, a)
and
<E, >
--k-2 . 0.5, for Tr>>T, (3.45.b)
(E)g

This result indicates that for T((Tc. the dispersion
goefficient is proportional to T2, wnhereas for

T>>Te it is a constant about one half tne value of the
sSteady case.

This behaviour is expected, since for long periods of
oscillation, the diffusion Process is similar to that in steady
flow, where an initial Patch has sufficient time to diffuse
before the flow reverses, On the other hand, in the limit

T+0 (rapid oscillations), the diffusing patch returns to

its original position rapidly before any diffusion can take
place, and therefore cannot respond to the shear in the
velocity profile, making the oscillatory dispersion coefficient
vanish in this limit, (A discussion ot these limits is given
in Fischer et al., 1979, p.95),

Later, Holley et a1, (1970) considered the same problem
with the linear velocity profile (3.40) (without the steady
component, U°=0) and obtained an analytical solution
from which an expression for <EL> is obtained:

<EL> = Eq T(T°) (3.46)

where
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2

T = T/T. = T E,/h

¢ z (3.47)

E. o= 2T ~ (3.40)
° " 240 .

which is the constant value of <E; > for the limit

T>>Tc (ice. one halft of 3.44), The function (3.46) is
shown in Fig.3.2.a, where the ratio <E >/E, is .
plotted against T’. in applying the resul?s to estuarijes,
Fischer et al. (1979, p.235), make an analogy to (3.31),
and use some empirical judgement to replace Es On the

left hand side of (3.46) by

- 2p2
Eo = a I0,°n2/E,

3.49
= a IOUZT A )
assuming Eo. the 1imit of (3.46) for T>>Tc. to .
be pr‘op'ortional to the steady dispersion coefficient, in fact

for a tinear velocity profile (3.40) it is found that (Fischer,
et al., 1979, p.93, Table 4.1)

2 - v2/24 and 1 = 1710
%u 74 40 / (3.50)

so that (3.44) results in the case of steady flow., Comparing
with (3.48) the proportionality constant is found as a=1/2,

and therefore (3.49) reduces to (3.48). It should be noted
that in their analogy, Fischer et a/. (1979) have

erroneousiy omitted this proportionality constant, which should
be included, Nevertheless, by combining (3.46), (3.49) and
(3.50) we obtain

2
<E; > = alo T ~~—== E weme eccaan ¥
L u T 240 1’ (3.51)

which is in fact the same as (3.46), written differentiy.
Fischer et al/. (1979) suggest using the first equality in
(3.51) empirically for velocity distributions other than the
case considered above., For examplie in a wide and shallow
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FIGURE 3.2 (a) Oscillatory flow dispersion coefficient,
function f£(T°) (Holiey et &/., 1970), and (b) the
normalized function g9(T’) due to Fischer et a/. (1979).
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estuary, theéy suggest using the time scale Tc:wglin
corresponding to lateral mixing, rather than that for
vertical mixing, since then the ‘Tateral shear is expected to
dominate the dispersion. The function o(T'):(T')"f(T‘)

is shown in Fig. 3.2.0.

In all of the analyses discussed above, it has commonly been
a3sumed that the velocity profile at each instant is the same

838 an equivalent steady flow. In reality, the velocity
distribution is also subject to a convective-diftfusion equation

of its own, where the turbulent diffusion of momentum in the
direction transverse to the flow must be taken into account.
In fact, the diffusion of the momentum in oscillatory flow
gives rise to snear waves in the fluid, just as

concentration waves in the case of diffusion equation which
propagate in the transverse direction causing phase shifts
which depend on position in the fluid, and which are important
in the correlations of u" and ¢® in equation (3.39.a),

These influences of simultaneous diffusion of momentum and
concentration were accounted for the first time by

Taylor (1974), who solved both equations and rigorously
constructed the oscillatory longitudinal dispersion coefficient
from (3.39.a). In his analyses, Taylor used constant turbulent
diffusivity coefficients for both momentum and concentration.

Taylor’s (1974) oscillatory flow dispersion coefficient is
analogous to (3.51), although the dependence on T’ is
modified compared to the Holley et a/. (1970) solution.

The results are plotted in Fig.3.3 where it is shown that a
maximum value of (EL> is obtained atcertain values of

Tc depending on the period T.
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FIGURE 3.3 Oscillatory flow dispersion coefficient for

different values of the period T (Taylor, 1974) .
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FIGURE 3.3 Normalized coaciltatory flow dispersion
coefficient (After Taylor, 1974 and Fischer et al/., 1979).

Taylor (1974) aiso showed that it is not appropriate to
normalise the oscilatory flow dispersion coefficient with
respect to the steady flow dispersion, for they are two
different processes. Wwhen the variables are normalized as

<EL) -1 Tg
<E; ’> = -n=- and T,'= (T°) = -
vueT ) T (3.52)
a single curve results as shown in Fig.3.5. The maximum
dispersion occurs for T:Tc/1.58=0.63Tc. i.e. when
the oscitlation period is of the same order as the transverse
mixing time (T°=0.63). Experimental verification of the
results as obtained by Taylor (1974) are also superposed.

It is quite interesting to plot the empirical formulation of
Fischer et al. (1979) based on the solution of Holley et

al. (1970) in comparison to Taylor’s (1974) results, as shown
in Fig. 3.4, It is noted that the agreement of the two
versions of the oscillatory dispersion coefficient is quite
good for T>T, (T,°<1). On the other hand, the two

solutions di?fer considerably for the range T<T

(Tf')')' for the phase distribution of concentr?iion and

ve

ocity profiles begin to play important roles, which are not
accounted for in the former solution.

Taylor (1974) has further considered the oscillating fiow in a
channel of rectangular cross-section. The main resuits are the
shifting of the period of oscillation for which maximum
dispersion occurs and rather small modifications in the
functional form displayed in Fig. 3.4 for different values of
the ratio T,.,/T.y. Taylor has found that by

varying Tc':¥ z/¥cy (cf. equation 3.38) in the
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range 1073 to 1, the peak value of the dispersion

cofficient corresponding to Fig., 3.4 changes by about 15 7 and
the valqe of Tz'=1/T' 2t which the peak occurs varies

between 1.58 - 4.5,

Oscillatory shear flow dispersion with applications on
horizontal mixing in the ocean have been investigated by Young
et al. (1982). Considering a periodic shear flow velocity

U= u, sin(mz) cos(wt) (3.53)

in an infinite domain, they solve for the concentration
distribution and obtain a dispersion coefficient
1t w2 K
<EL> = - (-9 (=-=25)
4 w 14k,
(3.54.2a)

where

% 2
o = EyWC/W (3.54.b)
2ince the velaocity taeld s periodic in 2, the results can also
be interpreted for an equivalent flow between horizontal
boundaries placed at z:0 and Z=w/m, where the
velocities vanish, i.e, a flow with ‘a vertical extent and
oscillation period of g

h = w/m and T = 2w/w (3.55)

respectively. The dispersion coefficient in (3.54.a) can then
be put into the form .

--bf = 1_ __-_I:-_- ) (3.56)
UST 16 1+(wT-/2)2 )

where T':EVT/ha:T/Tc as defined in (3.52.b).

This solution atlso gives a maximum value at T’=22/w=0.64

where the value of the function is <EL>/uoaT

=0.04. It can be observed that the form of the solution is
similar to those presented earlier in Fig.3.4, coinciding
better with the functional form of Holley et a1. (1970),

but the magnitude of the calculated values are about one order
larger than that plotted in the same figure. This is because
the original solution is obtained for unconfined flow, and the
characteristic velocity U, largely differs from that

defined earlier for confined flows, the similarity only being
established through heuristic arguments.,

The important result in the case of infinite domain, just |ike

in the confined flow case, is that two different limits are
obtained for oscillatory shear flow dispersion, i.e.

] mUQ 2
(EL> ] (é(:’ ) EZ' for Kg <<t

(3.57.a)




<E,> % (‘—19)a E,7Y, for x >t
L 2m z ges e (3.57.b)

The first case corresponds to rapid oscillations with high

vertical wavenumber and vanishes in the limit Kk, 0.

Young and Rhines (1982) note the similarity of this case to the

"OKubo (1967) mechanism",. in this 1imit, the dispersion is

directiy proportional to E,. The second case .,

corresponds to long period oscillations and is analogous to

Taylor’s (1953) initial theory of steady flow dispersion, where

the dispersion effect is inversely proportional to Ez.

Young et al. (1982) also construct dispersion coefficients

for a random velocity field, from observed and empirical models
of the shear spectrum in the ocean. They conclude that shear
dispersion by an internal-wave field is dominated by the Okubo
(1967) mechanism, rather than the Taylor(1953) mechanism, since
they show a dependence on Ez. The transition from the
.internal-wave shear dispersion regime to the meso-scale
stirring regime caused by eddying motions in the ocean is also
discussed by Young et a/. They find the important result

that meso-scale stirring begins influencing the dispersion at
horizontal scales as small as 100m.

4. SUSPERDED SEDIMENTS

4.1 TURBULERT DIFFUSION OF SUSPENDED MATTER

In natural water bodies, such as estuaries, rivers, lakes and
the ocean, suspended matter is quite common. The terms
suspended matter, suspended Solids, suspended sediments,
gelbstoffr or seston are widely applied to refer to these
concentrations of solids. Since the concentrations are often
smaller than that of the main constituent of water, suspended
sediment often does not influence the density of the mixture

- 80 that, we can use the previous approximations of Section .2
in its definition. However, the distinguishing property of
suspended matter is that individual particles are often heavier
(denser) than water. As a result, they sink in the vertical, !
characterized by the settl/ing velocity Wgq, which

differs from the vertical velocity w of the filuid

particles. We modify (1.7.3), (1.9) and (1.10) to write

ﬁA = pA (GA - '3 R)

s - =t ‘.'
PALTA-T) + pjp(T-wgh) -0

= -DAB va + pA‘G"sQ)t '

where the first term describes the diffusive flux and the
second term the convective flux of suspended matter. Following
the earlier developments of Section 1.2, we derive the
turbulent diffusion equation

dc dw,c ..
-- ¢+ —GOVC - -5:- = VeEeVe - ke

at (4.2)
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in analogy with (1.25) or (3.22). The boundary conditions
at a solid boundary are also modified as compared to (2.72).
Since the velocity and the flux“of material norma! to the
surface must vanish (uz0 and Nen:=0) in (4.4), we

have A A
clen ¢+ ¢ (woR)eh = O
(Ee¥c)e twgR e (.3 a)
which, for a horizontal surface (A=R} becomes
ac
z o WgC = o .
oz (4.3.b)
Note that in the above, we have assumed that no sediment can
Pass across a solid boundary. In free surface flows, (4.3.b)

is valid at the surface, if no sediments are input from the
atmosphere. In applying (4.3.D) to the bottom boundary, we must
account for the bottom deposition loss of sediments. While the
flow in the interior is often turbulent, there exists a viscous
sub-layer near the boundary. If the size of the settling
Particles is larger than the thickness of this ltayer they are
reflected from the bottom. On the other hand, particles
Smaller than the viscous layer thickness tend to stay near the
bottom to form a layer of fluid mud and are eventually
deposited on the bottom. - The following bottom boundary
condition has therefore been suggested by Sayre (1969) and
Jobson and Sayre (1970):

£ 'ac + (t-a) + (o]

Z 3z ¥a€ + ¥aQ = (4.3.¢)

where a represents the probability that a particle
settling to the bottom is deposited there, and yq is
the average rate of entrainment into the flow, q being the
Storage at the bed. Sayre (1969) and Jobson and Sayre (1970)
have obtained analytical and numerical solutions to the two-
dimensional version of equation (4.2) with the surface and
bottom boundary conditions {(4.3.b,¢c) respectively, and an
initial condition of a vertical line source, The solutions are
functions of m=z/h, T:tE,/n2, a and a
settling velocity parameter B:ws/xu. where
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FIGURE 4.1 vertical distribution of suspended matter for
B=0.1 and at T=0.5 (After Sayre, 1970).
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FIGURE 4.2 Profiles of velocity, concentration and flux of

suspended sedirments in the Thames estuary (After McCave, 1979).

x=0. 41 i8 Von Karman’s constant. The concentration

profile becomes time-independent (in the convected coordinates)
after an initial time of v>0.5, and is self similar.

Sayre’s solutions for T1>0.5, B=1, a=0 and a=1{

are shown in Fig. 4.1. Jobson and Sayre (1970) verified their
solutions with experimental data. Later, Sumer

(1974) has obtained analytical solutions for the various ranges
of parameters, and has shown that some of the special cases
reduce to Sayre’s solutions.

In the above descriptions the settiing velocity wg iS 3
function of sediment density, size and eddy viscosity,
empirical values of which can be found in the literature. in
situ values can be obtained through methods outlined in McCave
(1979). Note, however, that Wq is different for each

type of sediment (fine, coarse sand, silt, detritus, organic
debris etc.) and separate equations with appropriate values of
Wq are required to describe the diffusion of each size
fraction. In reality, the settling of sediments in sea water
ig8 often influenced by flocculation (combining of small
particles into larger aggregates through electrodynamic
attraction). The probability of flocculation is a function of
particle type, electrolytic strength (i.e. salinity), and
velocity shear (Dyer, 1979).

Example measurements of suspended sediment profiles i1n an
estuary are shown in Fig. 4.2. Coarser sediments are usually
concentrated near the bottom, whereas fine sediments in
suspension are more uniformly distributed in the vertical.

4, 2 SHEAR FLOW DISPERSION
Considering the diffusion equation (4.2) in the presence of

sediments, and vertical averaging following section 3.1 yields
(Nihout and Adam, 1974) '
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== + Ge¥ec = ; VeHE«Ve + Q - ke

at (4.4)
where ¥ represents the two dimensional gradient
operator as in section 3.1, and

Q = 1 (EZ gg + VISC) 2=

H dz z=-h (4.5)

represents the total fiux through the surface and the bottom.
Subtracting the averaged equation (4.4) from (4.2) yields the
Same equation as (3.12) with the addition of the following
terms on the right hand side
INS(3.12) = rhs(3.12) + w. °5- - q
) ) ’ 3 az (4.6)

In estimating the dispersion tensor E. Nihoul and Adam
(1974) assume low concentrations of fine sediment and therefore
neglect the influence of these terms in (4.6) and use the basic

balance in (3.13) to derive the expression for Ki; 'n
(3.19). Therefore the diwivi 1.4, Vo assumed 1o BhEe the same as
lhel 7.0 neatrally nuoyant concentrations,

On the other hand, the settling of suspended matter influences
the concentratior profiles as shown earlier and produce"
nonuniform distributions. tt should therefore be expected
that, in general the dispersion coefficient should be a
function of settling velocity. Sayre(1969) and Sumer (1974)
have taken tnhe settling terms into account and have calculated
the dispersion coefficient (normalized with respect to the
neutrally buoyant case) as a function of the settling velocity
as shown in Fig.4.3., With increasing settling velocity (e.g.
sediment size), the dispersion is increased with respect to the
neutrally buoyant case.

For completing the description of horizontal dispersion in
(4.4), the flux term Q must be specified. This is often done

4 T T 14 T T T
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1

Sayre’s (1960) numerics)
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FIGURE 4.3 Longitudinal dispersion coefficient for
Suspended matter (normalized with respect to neutrally buoyant
5ubstances) as a function of B8 (After Sumer, 1979).




empirically and, neglecting the surface fluxes, Q represents
the deposition losses to the bottom or reentrainment from the
bottom into the flow. A model of practical importance
(Sayre, 1969) is given by (4.3.¢) and (4.5).

The flux terms should be different for the different processes
of deposition and resuspension. For the deposition of cohesive
sediments Krone (1962,1976) suggests (after McCave, 1979)

Q= - wger (----%) (4.7)

for T<Te, Where T is the bed shear Stress,

Te the critical shear stress below which deposition

occurs, t the time, t. the “coagulation time™ (the

mean time between colfisions of particles), and r the mean
number of particles in a filoc. This formula is actually of
little practical use since the time t from the beginning of
flocculation cannot be easily determined in nature. A further
<complication arises because the settling velocity is a function
of concentration; when the sediment concentration is
sufficiently high, wga=kc", where Kk and n

are coefficients depending on sediment type and occasion, with
n=4/3 suggested by Krone(1962) and n=1 or 2

suggested by Owen(1971). For low concentrations of sediments,
Wg can often be taken as constant (n=0).

when both the rate of flocculation and the sediment
concentration are low, the approximations r=1 and
t<<tc can be made, upon which (4.7) reduces to

Q wae (1 T/7e) (4.8)
In many estuaries, a turbidity maximum and a corresponding
region of high deposition is found in the mid-reaches of the
estuary, where the bed shear stress decreases due to opposing
effects of river and open sea waters (e.g. near the tip of a
salt wedge). In this bottom convergence region, sediment
concentration increases and bottom shear vanishes, yielding
high deposition rates according to (4.8).

In the case of resuspension of sediments from the bottom
(erosion), a different formula applies according to
Partheniades (1968)

Q=M (T/7, - 1)
e (4.9)

where M is an erosion rate constant and ‘l’e the

minimum required bed shear stress fOf‘ erosion to take place.

The above relations are often difficult to use in modetlling
practice, mainly because they require the switching on and off
of the deposition and erosion processes according to situation.
Nihoul and Adam (1974) have adopted (4.8) for general modelling
application, assuming that it applies for both deposition
(T<T,) ang erosion(1>1c). Replacing

T:(p?/a)u + where f is the Darcy-weisbach
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bottom friction coefficient,

u® g
= =Y
Ue

(1

they write

(4.10)

Note that this source/sink function formulates the
deposition/erosion as a completely reversible process.

Nihout!

and Adam (1974) have used (4.10)

in (4.2) to model

dispersion and settling of sediments near a dump site in a
The mass m of sediments
deposited on the bottom are calculated from

shallow sea with tidat

am
at

flows,

(4.11%)

The source/sink function (4.10) has been utilized by Ozsoy

(1977, 1986) to model

suspended sediment transport and
deposition on the seaward side of a tidal

inlet. During the

ebb tide, the flow is in the form of a quasi-steady jet, with

using the jet velocity
distribution obtained by Ozsoy and Unluata(1982), equation

pronounced lateral diffusi
(4.4) with (4,10)
the jet (Fig.4.4.a).

entrainment into the jet,

settling velocity are taken

on,

Then,

bottom deposition rate seaward of the

(4.11). In Fig.4.4.p,
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Ug=U., SO that no deposition takes place at the Jet .
core, where no diffusion or settling occurs, In the diffusion
regions of the Jjet, diffusion and settling processes compete
and yield maximum deposition rates at lateral Jobes. In the
second case (Fig. 4.4.¢), the inlet velocity exceeds the
critical vetlocity (uozl.duc). and the materiatl

eroded at the Jjet core is deposited in the bar system
encircliing the mouth, The implications on tidal inlet
morphology and river deltas are discussed in Ozsoy (1986).
wang (1984) has applied Ozsoy’s model (although without due
reference to the originatlt solution provided by Ozsoy, 1977) to
the dynamics and growth of a river detta.

Sediment diffusion and dispersion is an emerging field of study
deserving much attention. It must however be stressed that the
subject is a complicated one requiring considerable empirical
guidance. Many aspects of sediment transport, such as the bed-
load mode of transport have not been described within the
limited scope of this course. An expedient summary of marine
gediment transport, its relationships with shelf circulation
and implications on morphology can be found in Stanley and
Swift (1976). The modelling of sediment transport on the
continental shelf requires special attention, an introduction
to which can be found in Smith (1977).

5. ESTUARINE TRANSPORT

5. 1 INTRODUCTION

An estuary is a semi-enclosed coastal water body communicating
with the sea through a mouth or entrance region and which is
diluted considerably by the influence or river runoff in the
interior region. Although this definition is qQuite general, it
does not sufficiently describe an estuary, since the physical
nature of each estuary differs considerably from another with
respect to the varying influences of geometrical shape (depth
and area distribution, sand bars, islands, channels, ruggedness
of coasts etc.), amount of freshwater inflow, the nature of the
restricted exchange at its connection with the sea, the degree
of tidal influence, the weather conditions etc. As a result of
these varying influences, each estuary has a different
personality and the stratification and circulation in one
estuary may differ greatiy from another. There has been
various attempts to classify estuaries, for example by
Pritchard (1967) and Hansen and Rattray (1966), basically
utilizing the salinity and the velocity ratios of surface
values to mean cross sectional values, Generally, an estuary
can be of salt wedge type, where fresh water on the surface

and sea water at the bottom are sharply separated by a wedge,
or partially mixed type, where vertical stratification is
strong but an interface is not formed, or well mixed type,
where vertical stratification is smalil,

Since estuarine processes are quite complicated, they are the
subjects of detailed theory in their own right. However, the
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general hydrodynamic, thermodynamic and mass copservation

laws of Section 1 can, in principle, be applied to estuaries,
with further specific assumptions and reductions required. The
various aspects of estuarine processes can be found in a number
of specialized books such as |ppen (1966), Dyer (1973), Officer
(1976), Kjerfve (1978), McDoweil and O’Connor (1977).

Oour purpose here is not to describe in detail the hydrodynamic
and mixing characteristics in estuaries, but rather how these
characteristics influence the transport and dispersion of a
substance in solution, e.g. a poliutant. On the other hand,
transport processes in an estuary are highly dependent on the
hydrodynamic and mixing characteristics, and therefore we
venture for a brief review of the influencing factors,

5.2 ESTUARINE HIXING

The processes of estuarine mixing will be briefly summarized,
following Fischer et al/. (1979), but Keeping the scope much

more concise within the present context. Various mechanisms
are considered, which are often superposed in rea) estuaries,

wind mixing: :

Wind drift and mixing is often important in shallow and wide
estuaries. The surface stress exerted by the wind constitutes
a force at the surface, which is redistributed over the water
column through the vertical diffusion of momentum, In salt-
wedge type estuaries (two layer stratification), the wind
induced driving force influences only the upper layer, and
causes entrainment processes at the interface. On the other
hand, in well-mixed estuaries, the wind force is distributed
over the whole depth, so that it influences shallow regions
more than deep regions, A residual wind-induced circultation
can therefore be driven in estuaries wrth large depth
variations, which can influence the dispersion patterns
(Fischer ot al/, 1979).

Influence of stratification onm « 7.1:

Oone o7 Lhic muol amportant +actore to be consirdered in estuaries
'S the inhibiting 1nfluence of stratification on turbulence,
and hence on vertical mixing. As compared to the homogeneous
cases considered earlier, an extra amount of energy is required
for vertical mixing in order to overcome the potential energy
of stratification. In estuaries, this energy is derived from
boundary and internal shear. According to a weill known

formula due to Munk and Anderson (1948), the vertical
diffusivity decreases with increasing stratification and
increases with increasing vertical shear. Fischer et al.
(1979), however, caution for indiscriminate use of such
formulas, since many other processes that need empiricat
definition can influence the diffusion processes,

Longitudinal Dispersion:

Assuming an estuary with Jongitudinal! varijations of cross
sectional area A(x), and a flow induced by fresh water
infiow u=Qe/A, where Qg is the river discharge,




equation (3.23) should in principle be applicable to describe
the longitudinal dispersion in an estuary, i.e. considering
steady flows due to river discharge alone, we have

A(x)ac + Q L A(x) (K, +E )ac
at Tax = ax X"xTax ° (5.1)

Here, K, is the longitudinal dispersion coefficient

which must now be evaluated from (3.24) based on the different

conditions of stratification, velocity distribution, transverse

mixing etc., 83 summarized above,

In principle, the use of equation (5.1) with appropriate values
of the longitudinal dispersion coefficient, should describe the
dispersion processes in an estuary. However, as noted above,
Ky is modified due to a number of influences. A

method often suggested was to obtain Kx from the

observed longitudinal salinity distributions, since the cross
sectionally averaged salinities also obey (5.1) with the
unsteady term omitted for equilibrium conditions, and hence
could be used as a tracer. On the other hand, Fischer et

al (1979) admit that, in spite of the considerabile :
developments in the last 25-30 years since these ideas were
suggested, there is still no general predictive method to
obtain the dispersion coefficient in estuaries. Nevertheless,
equation (5.1) has often been used in estuaries with
experimentally determined values of the dispersion
coefficients, with examples provided by Officer (1976) and
Fischer et a8l (1979).

Tidal dispersion:

in the above sub-sections, the influence of oscillatory shear
flows, such as that occurs due to tidal propogation in
estuaries have not been considered. In the presence of !
stratification and residual circulations, such analyses are
tedious and produce little of practical use, although an
understanding of various contributions can be reached (cf. Dyer
(1973) and Fischer et al/ (1979)).

On the other hand, the longitudinal dispersion in well mixed
estuaries due to tidal oscillations alone can be estimated
through the methods outlined for oscillatory shear flows in
section 3. Fischer et a8/ (1979) have taken this route, but
considering the dominant influence of transverse mixing have
formutated (3.51) such that the transverse mixing time have
been used instead of the vertical mixing time. Wwe have already
discussed these aspects of the applications in section 3.

Tidal pumping:

The tidal oscillatory flow in estuaries often gives rise to a
net steady circulation, which only becomes apparent after
averaging the currents over the period of oscillation. These
residual circulations arise mainly due to the nonlinear terms
in the equations of motion which vield mean currents when
averaged: convection and turbulent bottom friction and their
interactions with bottom topography. Examples of residual
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circulations in estuaries are given by Stommel and Farmer
(1952), Bowden and Gilligan (1971), Van de Kreeke (1975,1978)
etc. These residual circulations contribute effectively to the
longitudinal dispersion and exchange processes.

Stommel and Farmer (1952) have considered the residual
circulations near the mouth of an estuary. As shown in Fig.
8.1.a, the ebb flow in the estuary is in the form of a sink
flow converging towards the mouth, and the volume of water
ejected out of the estuary is in the form of a semi-circle.
During flood flow, the water entering from the sea is idealized
as a rectangular plug intruding the estuary. Over one tidal
cycle, only a proportion of material introduced on the ocean
side during flood will return to the ocean during the
subsequent ebb-flow, leading to trapping within the estuary.
The residual circulation represented for the estuary side in
Fig. 5.9.8 is in fact also valid for the ocean side of the
estuary mouth, reversing the roles of flood and ebb (mirror
image of Fig.5.1.a with respect to the mouth region).

The flood flow represented in Fig.5.1.a8 (or alternatively the
ebb-flow on the ocean side) is actually in the form of a
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FIGURE 5.1 Idealizations of tidal residual flow near
entrances (a) Stommel and Farmer (t1952), (b) Ozso0y (1977)
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turbulent jet as shown in Fig.5.1.db, rather than the idealized
form of a slug. The hydrodynamic and mass transport
characteristics of such jets have been investigated by Ozsoy
and Unilvata (1982) and Ozsoy (1966), allowing the catculation
of exchange., An ocean mixing coefficient Yo

defined as the ratio of the average concentrations passing
through the mouth during the respective fl10o0d and ebb phases
can therefore be defined and calculated as 8 function of bottom
friction, mouth geometry and the ratio T :

:Tuo/abo of the tidal excursion length usT to

the inlet width abo (uy is the mouth flow

velocity, T the period of the tide). The ocean mixing
coefficient thus calculated by Ozsoy (1977) and Mehta and Ozsoy
(1978) for the case of constant depth is shown in Fig.5.2 as a
function of a bottom friction parameter

u=fd /Bho (f is the Darcy-weisbach bottom

friction coefficient and h. is the depth) and the

excursion length ratio . Taylor and Dean (1974) have
considered the same problem earlier, but have found a different
expression since they neglect lateral entrainment in the jet.

These concepts of tidal exchange at an entrance region has been
applied by Ozsoy (1977) to the exchange of a pollutant between
a bay and the ocean. The tidal flow is idealized as a series
of quasi-steady flows (with inlet velocity U, during
ebb and ~U, during flood). The average concentrations
at the inlet (entrance) during the ebb and flood flows are
retated as

cigh = v cje"! (5.2)

where the subscripts denote izinltet, fzflood, ezebb and the
superscript n represents the n th tidal cycle starting with
flood. The mixing on the bay side is assumed to be more complex
due to its confined nature, where it is assumed that
Cien:ybcifn"1_YD)cben i (5.3)
where b:=bay, Che the volume averaged bay concentration
during ebb, and Yp 8 coefficient describing the bay i
mixing, and varying in the range (0,1), so that the
concentration of the ebb flow at the inlet is always between
the vailues C;p and Cpher representing the intet

(flood) and bay (previous ebb) concentrations. Considering
further the mass balance of the bay during the flood and ebb
phases, Ozsoy (1977) obtained the recursion formuia

n _ n-1{ n-2
Cpe = AyCphe + Apcpe

(5.4.a)
where
(1-vp Ik
= 1 - =--2b.2
Ay * Yo¥o (1-k/2) (5.4.b)
2 Hoyplyglisks2)
Az = (1-k/2) Yo (5.4.¢)
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and where

K = Q/v = an/hb (8.4 . 5

is the ratio of the tidal prism O to the mean bay
volume |V, a, being the tidal amplitude and
"b the mean depth of the bay.

Ozsoy (1977) applied this method to Card Sound in Floriaa,
where a dye injection study had earlier been made by -Taylor and
Dean (1974). Using numerical values of the parameters and the
recursion formula (5.4.a), reasonable estimates of the dye
remaining in the bay were obtained, as shown in Fig. 5.3. In
the case of no mixing in the bay, it is sufficient to take
Yp=1. on the other hand, if the bay waters are

completely mixed with the incoming tidal waters during flood,
it is shown that Yp Should have the value

Yb=k/("K/a’=Ybo- These two limits bound the

possible solutions that can be obtained for specific cases of
bay mixing. An assumption of partial mixing in the bay with
Yp=¥po/2 have yielded reasonable agreement with

observations of Taylor and Dean {(1974), which were obtained by
integrating the dye concentration over the bay volume.

Tidal Trapping:

In estuaries with storage basins, or relatively stagnant
regions of branchjng waterways or embayments along the coasts,
tidal currents can cause a subtle and additional dispersive
effect called tidal trapping. A patch of polilutant released in
such a system may get partially trapped at the surrounding
embayments or shallow banks during & certain phase of the Llide
and gets released into the mainsts eam flow some time later.
This influence results in increased dispersion, since the
material in the mainstream flow and the fraction caught in the
trap zones are seperated from each other, Shijf and Schonfeld
(1953) and OKubo (1973) have studied tidal trapping, and have
found that it may significantly contribute to dispersion as
compared to shear effects alone. Fischer et a/. (1979)
estimate that the trapping mechanism may play a8 major role in
many estuaries, :




5. 3 CHARACTERISTIC TIME SCALES

There are various time scales characterising the various
mechaniams of exchange and transport in estuaries. Wwe have
already seen in section 4, that two of the basic time scales
are the transverse mixing times
T.., = h2/E and T.p = WS/E
cv A\ A ch H (5.5.8,b)

the former being for vertical and the latter for transverse
horizontal (lateral) mixing.

Fischer et al/. (1979) suggest another time scale based on
empirical judgement and in analogy to the above, namely the
replacement time, representing the time required for a siug
of material initially concentrated at one end of the basin to
reach approximately uniform concentration throughout the basin,
given as :
2
- T = 0.4 LS/E
r 7fL (5.6)
where L is the length of the basin and EL the
longitudinal dispersion coefficient.

An important concept is the rlushing time which is the
average time spent by a tracer particle in the estuary, defined
a3 the ratio of the fresh water volume in the estuary to the
fresh water flux (Officer, 1976; Fischer et a/., 1979):
Te = Yp,/Q
r t/Q¢ (5.7)
where Q, is the fresh water volume flux and V,

is the total volume of fresh water in the estuary, calculated
from

$,.~8
Ve = J -g-- ay = I fay = v ,
¥ Y (5.8)

Here, §, is the ocean salinity, & the salinity in

the basin and V the volume of the basin, and ¥ is the
freshness defined as the fraction of fresh water at any point
and f=($S —8)/8o is the mean freshness of the basin.

Note that the above flushing time is defined for an estuary
influenced by a fresh water inflow alone.

For a tidal estuary, the tigal prism flushing time
(Officer, 1976) is obtained by letting Vp and
Vg respectively represent the volumes of ocean and
river water entering the estuary during a tidal cycle, and
writing the salt balance at high tide
+ =

p * VRIS = Vp 8o - (5.9.a)
where & is the mean salinity in the estuvary, and the mean
freshness is therefore f:VR/P where P:=V ’VR
is the tidal prism. Then the tidal prigm flushing time is




v v
Ty = == = ===
Q  Ve/T

with T being the tidal period, Since neither the entire
estuary, nor the ebb-water on the ocean side are not usually

completely mixed during each tidal cycle, Tt is
generaily smalter than Tf.

v
- 7T 5.9.b
4 ( )

If we perform a dye experiment in an estuary we need another
measure of pollutant rlushing time. Considering a

continuous release of rate q and steady-state conditions to
prevail, this is given as (Officer,1976)

Tp = PeV/q K Tem 82)

where p and ¢ are the mean estuarine density and
concentration.

Instead of the flushing time the term resiadénce time is
also often emplioyed. However there seems to be a confusion
with respect to the terminology applied to the various time
scales of exchange.

Realizing the often confused and misleading terminology, Bolin
and Rodhe (1973) have reviewed these concepts, and have derived
the basic time scales. Basing their analyses on rigorous
foundations, they have defined the time scales based on the
age T of any fluid element in the reservoir (i.e. the

time elapsed since the entry of that element in the reservoir).
The total mass of the basin is Ho = PV. A

cumulative age distribution function M(T) gives the

mass that has spent a time 1ess or equa) to T in the

reservoir. All materia)l elements spend an infinite time or
less in the basin, 8o that

1im M(T) = M, (5.11)
T-e

An age frequency distribution functon ¥{T) can then be
defined and normalized such that

I. ¥({T) dr = ¢ (5.12)
o
which is related. to the cumulative function through
1 dM(T)
YiT) = =~ ~---= 5 (5.13)
My, dt

Secondly, consider a steady state volume flux ro of

material entering the basin or equivalently leaving the basin.
A cumulative transit time function F(T) is defined,

giving the mass leaving the basin Per unit time of those fiuid
elements which has spent a time of T or iess in the

basin. Obviously,

4!2 F(T) = Fy (5.14)




and-again we define a frequency distribution of transit time
®{7T) such that

f- $(r) dv = 1 , (5.15)
o
This frequency function is then
t dF (T
o(t) = -- .._.!-! s (5.16)
Fo dt

In the case of a steady-state balance, the two sets of
functions are related through

aM(r)
Fo = F(T) = My w(7) = ---2
o o ar ' (5.17)
or with the aid of (5.14)
M T
o(r) = - Ho IVIT) (5.18)
Fo dT
Since F(0)=0, it follows from (5.18) that
F
Y(0o) = -2, (5.19)
Mo ;

Equipped with the above tooils, Bolin and Rodhe (1973) defined
the various time scales as follows:

The turn-over time is the ratio of the total mass of the
reservoir to the total flux

N
To = =2 . (5.20)
F
o
The average trans:t time of particles leaving the basin
(the expected life time of newly incorporated particles) is
given by

00
Ho
Ty = J. T®(T) dv = -9 - To
o Fo
(5.21%)
which is integrated by making use of (5.18). Therefore, the
average transit time and turn-over time equivalent. An
alternative name for both time scales is residence time as
suggested by Bolin and Rodhe (1973), who note that this last
term has often been misused.

Another time scale that can be defined is the average age
of particles in the reservoir at any time, given by
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3 ‘ £ .,
T, = I TY(T) 3T = -- I T dM(T) . (5.22)
o Mo Jo

Since it is shown that Te=Tor there are

basically two time scales Ty and T,.

The relation between these two time scales is determined by the
form of the frequency functions ¥(T) and &(T).

Three cases can be distinguished according to the ranges of
these time scales: '

T < Te!

Aar‘eser"voir‘ with modest transport velocities and source and
SinK regions placed far apart belongs to this case (for
example, a well-mixed, wide and elongated estuary).

Teg = Ty! :

Aawe!lsmixed reservoir with isolated source/sink regions, such
that all elements in the reservoir have equa) probability of
exiting at any time is characterised by this condition (for
example, a well-mixed estuary of very smal} volume) . Bolin and
Rodhe (1973) note, however, that since any element in the basin
is comprised of particles of all! ages, it is impossible in this
case to establish the frequency functions by direct
observation, In this case, the sufficient condition (from
5.19, 5.21 and 5.22) is

!
Y(T) = &(7) - exP(-7/7,) . (5. 23)

Ta > Tyt

Tgis cgse represents the situation in which most of the fluid
Particles entering the reservoir exit in a short time and those
remaining particlies stay in the reservoir for a much longer
time. Such a-'case is possible if the source and sink regions
are close to each other (short circuiting), S0 that any
particles diffusing in the relatively stagnant major part of
the basin are trapped in these regions (for example a salt-
wedge or partially mixed estuary with stagnant regions).,

Takeoka (1984a) developed these concepts further and redefined
the residence time differently from Bolin and Rodhe

(1973), producing two different residence times, one' for the
reservoir and one for the inlet. Takeoka’s residence time is
not the same¢ as the average transit time, since he defined it
as being the average time required for the particles to tcich
the outtet, which becomes o compicmint of the AvVErage age.
Thesoe results were then applied to coastal seas (1984a,b).

While the earlier definitions of time scales in this section
apply to specific situations in estuaries, the latter more
rigorous definitions outl!ined above apply to more general
situations, involving larger basins with more structural
variations. On the other hand, they require the determination
of frequency functions through direct observations or various o
models.
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