Chapter 6

Decreased levels of the invasive ctenophore *Mnemiopsis* in the Marmara Sea in 2001

MELEK ISINIBILIR, AHMET N. TARKAN & AHMET E. KIDEYS

Istanbul University, Faculty of Fisheries, Laleli, Istanbul, TURKEY

Institute of Marine Sciences, Middle East Technical University, Erdemli, TURKEY

Keywords: *Mnemiopsis leidyi*, *Berroe cf ovata*, Marmara Sea, population dynamics, predation

Mnemiopsis leidyi, an endemic ctenophore of the western Atlantic, was first reported in the Marmara Sea in summer 1992, at an average abundance of 27 ind. m⁻³. We investigated its abundance and distribution together with that of the mesozooplankton (most species are prey organisms of *M. leidyi*) at eight stations during August 2001, in order to evaluate recent population developments with regard to the impact of its predator, *Berroe cf ovata*. The abundance of *M. leidyi* was found to be quite low (range 0.5-8.8 ind. m⁻³, average 1.62 ind. m⁻³) compared to 1992. *B. cf ovata* was, although at very low abundance (0.1-1.1 ind. m⁻³), only present at stations where *M. leidyi* occurred. The zooplankton abundance was higher during our investigation than in previous years, which should at least partly be due to a decreased predation impact by *M. leidyi*.

1. Introduction

The Marmara Sea is an inland sea which, together with the Bosporus and Dardanelles, forms the Turkish Strait Systems. The water column has two different layers; whilst the top 20-30 m has low saline (around 22 ppt) Black Sea waters, saline Mediterranean waters (38 ppt) occupy the lower layers which can be as deep as 1390 m.

Inland seas are more sensitive to impact than open seas. Many dramatic changes took place in recent years in the Marmara Sea, all connected with anthropogenic stress. This includes the release of industrial and agricultural wastes into the rivers that drain into the sea, water transfer from the eutrophic Black Sea, an increase in the level of marine pollution, and heavy exploitation of the fish stocks in the last few years. The Marmara Sea ecosystem has also been damaged in the past by opportunistic invasions of temperate and subtropical animal and plant species. The introduction of a new species is often
harmful for the recipient ecosystem. It is important to know the degree of tolerance of the invader to a new environment, peculiarities of its biology in the new habitat, and the relationship between introduced and indigenous species, its prey and competitors. All these factors determine the abundance and distribution of the invader, and its impact on the ecosystem.

M. leidyi, a voracious zooplanktivorous ctenophore, was accidentally introduced in the early 1980's to the Black Sea, almost certainly with ballast water from the northwestern Atlantic coastal region (Vinogradov et al., 1989). Via the surface currents flowing from the Black Sea through the Bosporus, *Mnemiopsis* invaded the Marmara Sea as well. Documented was the appearance of *Mnemiopsis* at first in 1992 by (Shiganova 1993), when the levels of *M. leidyi* were already lower in the Black Sea than in 1988 and 1989. Later, several other investigators provided data on the abundance of this ctenophore in the Marmara Sea (Kudeys and Niemann 1994, Shiganova et al., 1995; Isimbilir and Tarkan, 2001; Yuksek et al., 2002). In early October 1992, the average numbers of *M. leidyi* were 27 ind. m\(^{-3}\) (Shiganova et al., 1995), but in July, 1993, these numbers were as low as 0.1 ind. m\(^{-3}\) (Kudeys and Niemann, 1994). In August 2000, higher values of *M. leidyi* were reported again from the Marmara Sea, (12.9 ind. m\(^{-3}\)) (Isimbilir and Tarkan, 2001). However, a new era started with the appearance of a predator of *Mnemiopsis*, the ctenophore *Beroe ovata* sensu Mayer, in the Marmara Sea in the late 1990s. This ctenophore feeds almost exclusively on other ctenophores, especially on *Mnemiopsis* (GESAMP, 1997). *B. ovata* was supposed to be of American origin, too and it seems to be different from the native species *Beroe ovata* sensu Chun which is not rare in the Mediterranean. (R. Harbison and K. Bayha, personal communication). *Beroe ovata* was first found in the Marmara Sea as early as summer 1992 (Shiganova et al., 1995), but if it was already the new invader species could not be clarified.

A new era started with the appearance in the Marmara Sea in the late 1990s of a predator of *Mnemiopsis*, the ctenophore *Beroe ovata* sensu Mayer. This ctenophore feeds almost exclusively on other ctenophores, especially on *Mnemiopsis* (GESAMP, 1997). *B. cf. ovata* is currently supposed to be of American origin too, and molecular methods have revealed that it is different from the species *Beroe ovata* sensu Chun, which is not rare in the Mediterranean. (Bayha et al., this volume). Because of this unsettled taxonomic situation, we will henceforth refer to it as *Beroe cf. ovata*. This ctenophore was found in the Marmara Sea as early as summer 1992 (Shiganova et al., 1995); whether it was already present there earlier could not be clarified.

Our purpose is to evaluate the abundance and distribution of *Mnemiopsis leidyi* after the arrival of *Beroe ovata* in the Marmara Sea.

2. Material and methods

The occurrence of *Mnemiopsis leidyi* and *Beroe ovata* were investigated in the Marmara Sea between 12 and 18 August 2001 aboard the R/V "YUNUS". Sampling was conducted at 8 stations (Fig. 1). Ctenophores and zooplankton samples were collected by vertical towing of a WP2 plankton net with a diameter of 57 cm and mesh size of 200 micrometers between the sea surface and the halocline, where water of the Black Sea and the Mediterranean Sea mixes (15-30m). The total volume of seawater filtered was calculated as 32.5 m\(^3\). Ctenophore samples were identified and their total lengths measured on board. Zooplankton samples were preserved in 4% buffered formalin and qualitative and quantitative analyses were performed in the laboratory under a binocular microscope. Some basic environmental variables of the seawater (e.g. temperature and salinity) were also measured.

Figure 1. Location of 8 stations in the Marmara Sea, sampled between 12 and 18 August 2001

3. Results

Temperature and salinity data are presented in Table 1. The two-layer structure of the Marmara Sea was clear from the salinity and temperature values: whilst the salinity was around 22 ppt at the surface, much more saline Mediterranean water (about 36 ppt) was found at 30 m depth. The temperature also sharply decreased from 22 °C at the surface to around 15 °C at 30 m. Thus, it is clear that both a halocline and a thermocline occur between 20-30.

In total, 51 *Mnemiopsis leidyi* individuals were counted at the 8 stations with a mean abundance of 1.62 ind. m\(^{-3}\) (Fig. 2). The abundance varied spatially. No individuals were found at station 3, 8, and the offshore station 6, while the maximum of 8.8 ind. m\(^{-3}\)
were recorded at station 5, consisting of almost all small individuals collected during the survey. The majority of animals were found between 20 and 30 m. Generally, the smallest individuals (10 mm in length) were occupying the calm and near-coastal areas of the Sea. Maximum length of *Mnemiopsis leidyi* was 130 mm and average length was 30 mm (Fig. 3).

Table 1. Temperature and salinity at eight stations in the Marmara Sea between 12 and 18 August 2001

<table>
<thead>
<tr>
<th>Stations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>12.08.01</td>
<td>12.08.01</td>
<td>14.08.01</td>
<td>14.08.01</td>
<td>15.08.01</td>
<td>17.08.01</td>
<td>17.08.01</td>
<td>18.08.01</td>
</tr>
<tr>
<td>Surface</td>
<td>27.0</td>
<td>25.4</td>
<td>25.7</td>
<td>25.4</td>
<td>22.8</td>
<td>24.6</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>Salinity (%)</td>
<td>33.5</td>
<td>62.5</td>
<td>37.0</td>
<td>38.0</td>
<td>60.0</td>
<td>90.0</td>
<td>23.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Figure 2. Abundance of Mnemiopsis leidyi and Beroe ovata in the Marmara Sea in August 2001

Only eight large *Beroe ovata* specimens with an average abundance of 0.3 ind. m⁻³ were found in August 2001 (Fig. 2). Their total lengths ranged from 125 to 200 m. *Beroe ovata* was only present at stations where *Mnemiopsis leidyi* was abundant. Analysis of data collected in August 2001 showed a modest positive correlation between the number of *M. leidyi* and the number of *Beroe ovata* (n = 8, r = 0.643, p < 0.05, non-parametric Spearman’s rank correlation analysis).

The total zooplankton abundance varied between 20,000 and 27,000 ind. m⁻³ at the southern stations (Fig. 4). At the more northern stations 4.5.7.8 the abundance was less, 10,000-15,000 ind. m⁻³. The most offshore station 6 displayed the lowest abundance, about 1000 ind. m⁻³.

At station 5, total zooplankton abundance was in the same range as the other northern stations, despite of the local abundance of the *Mnemiopsis leidyi* (Figs 2, 4). The number of *M. leidyi* and the number of zooplankton were not correlated in the Marmara Sea during August 2001 (n = 8, r = 0.239, p < 0.05, non-parametric Spearman’s rank correlation analysis).

The zooplankton of the Marmara Sea was found to consist of five groups. These were the Copepoda, Cladocera, Meroplankton, *Noctiluca miliaris* and "Others", consisting of Nauplii, Appendicularia, Chaetognatha and Ichthyoplankton. Compared to all other zooplankton groups, copepods were the dominant taxon (Fig. 5). The maximum abundance of Copepoda (13 440 ind. m⁻³) was recorded at the station 3, in Erdek Bay, where no *Mnemiopsis* occurred.
4. Discussion

Mnemiopsis leidyi is known to tolerate a wide range of salinities (10-70%) and temperatures (1.3-28.8°C) (Burrell & Van Engel, 1976). Thus, the Marmara Sea has a suitable salinity (22.5-36.8%) and temperature (27-15°C) for *M. leidyi* to survive and reproduce. Ctenophores can be important carnivores in planktonic food chains. They are sometimes so numerous that they drastically modify the structure of an otherwise stable community (Fraser, 1970; Bishop, 1967). The outbreak of the ctenophore *M. leidyi* in the Black Sea at the end of the 1980s, changed the structure of the planktonic communities and affected the functioning ecosystem in an essential way (Vinogradov et al., 1989).

Shiganova et al. (1995) assumed that *Mnemiopsis leidyi* first penetrated to the Marmara Sea from the Black Sea with the upper Bosphorus current. Considering the continuous strong flow from the Black Sea towards the Sea of Marmara, the arrival of *M. leidyi* here must have occurred long before 1992, presumably as soon as the ctenophores became abundant in the Black Sea, in 1987 or 1988. Unfortunately no data existed before 1992 to corroborate this hypothesis.

By October 1992, *Mnemiopsis leidyi* was present in the Marmara Sea, at an average abundance of 27 ind. m⁻³ (Shiganova et al., 1995). Shiganova et al., 1995 suggested that *M. leidyi* occurs all year round in the upper water layer of the Marmara Sea, similar to the situation in the Black Sea. However in the subsequent years the density of *M. leidyi* decreased considerably. In July 1993, the average density of *M. leidyi* was only 0.1 ind. m⁻³ (Kideys and Niermann, 1994), in July 1999 the abundance was 0.06 ind. m⁻³ (only Bosphorus data; Tarkan et al., 2000), in August 2000, the numbers increased to 12.9 ind. m⁻³ (Isinlibir and Tarkan, 2001) and dropped again to 1.62 ind. m⁻³ in August 2001 (present study).

These data demonstrate that *Mnemiopsis leidyi* populations show marked interannual variation in the Marmara Sea, probably resulting from environmental interactions and food availability and spawning season. In 1992, medium-sized individuals (10-45 mm) of *Mnemiopsis leidyi* were dominant in the Marmara Sea (Shiganova et al., 1995), but later in 2000, small individuals were found the dominant group in the northern part of Marmara Sea (Isinlibir and Tarkan, 2001). These small individuals, occupying the calm and coastal areas of the Sea, may suggest either that spawning of *Mnemiopsis leidyi* occurs in the coastal regions of the Sea or that the ctenophores here are starving more than those in the offshore regions (it is known that they shrink with starvation).

At least three species of the predatory, large-sized genus *Beroe* inhabit the Mediterranean Sea: *Beroe cucumis* Fabricius (in Campbell, 1982), *B. ovata* Esch and *B. forskali* Chun (in Tregouboff and Rose, 1957). *Beroe ovata* sensu Chun was till end of the 1990's not distributed the Black Sea. Thinkable is, that for this species the low salinity of the Black Sea was a barrier. The recently introduced *Beroe ovata* censu Mayer, possibly of western Atlantic origin, seems to be adapted to low salinity.

In 1992 *Beroe ovata* was recorded in the Marmara Sea (Shiganova et al., 1995), however it was uncertain, which species of *Beroe* it was. In 1999, two individuals of *B. ovata* were found near the Bosphorus (Tarkan et al., 2000). During 2000 *B. ovata* was not found in the Marmara Sea (Isinlibir and Tarkan, 2001). In August 2001 we caught eight
most individuals with an average abundance of 0.3 ind. m$^{-3}$. But still uncertain is, which of Beroe was collected, the Mediterraen or the newly introduced one. The presence of large individuals in the Marmara Sea during August 2001 may suggest that B. ovata is transported to the Marmara Sea by currents from the adjacent Black Sea.

First, (2001, 2002) and Kideys (2002) demonstrated for the Black Sea area off לת קים showing that Beroe ovata sensu Mayer could control the M. leidyi stock. With the increase of B. ovata in the Black Sea end of the 1990's the previous year-round distribution of M. leidyi became limited to a very short period in summer (Finenko et al., 2000).

It is the appearance of its predator, Beroe ovata, that had an effect on the stock of M. leidyi in the Sea of Marmara in recent years, as it was observed for the Black Sea, but limited data we can not make such a statement. Compared to earlier investigations the abundance of copepods was high in August 2001. In 1977 the abundance of copepods in northern Marmara was 257 ind. m$^{-3}$, in the southern Marmara 360 ind. m$^{-3}$ (Ilkicker, 1980). In August 1992, the zooplankton was drastically reduced to 33 ind. m$^{-3}$ in the northern and southern Marmara respectively (Shiganova et al., 1996). The food zooplankton increased in the northern Marmara to 2935 ind. m$^{-3}$ and (present study) to 14751 ind. m$^{-3}$.

M. leidyi is a voracious feeder on zooplankton, especially on copepods. It was often observed in the Black Sea, that in areas with high abundance of M. leidyi the copepods were harshly reduced (Niermann et al., 1999). This was not found in the Marmara during August 2001. There was no significant correlation between the abundance of copepods and Mnemiopsis. Despite of that, by comparing long-term trends in the Black and Marmara Sea, it is seems that the fluctuation of mesozooplankton was similar, in both areas, low numbers at the beginning of 1990's and high numbers of zooplankton and of the 1990's and beginning of the 2000's. It could be assumed that there is a connection between the decrease in the amount of zooplankton and the extraordinary abundance of Mnemiopsis leidyi and vice versa. Unfortunately we do not have weight data on this which would be a better measure for analysing long-term changes.

Since the Black Sea the fish catch of the Marmara Sea was the lowest in the late 1970's, in the period of highest M. leidyi impact in the Black Sea. According to results of the high density of Mnemiopsis leidyi in the Black Sea during 1989 and 1990, it could be responsible for the decline of the anchovy, because M. leidyi feed on adult and larvae and is a strong competitor for the mesozooplankton food of the juvenile anchovy (Kideys, 2000, Shiganova, 1998).

Due to a large amount of data on Mnemiopsis for this time period, we can only assume that beside impacts (see Niermann in this volume) probably Mnemiopsis, could have affected anchovy in the Sea of Marmara as well.

A significant increase of Mnemiopsis during 1989 in the Black Sea (which could probably assume Marmara Sea as well), fish catches were increasing steadily until 1999 (up to about 800 thousand tonnes). In 2000 the catches decreased to 21 thousand tonnes.

What were the reasons for the recovery of the catches during the 1990's, the status in 1999 and the drastic decrease in 2000 can not be answered by our investi-
5. Acknowledgements

We are grateful to Dr. Ulrich Niermann for his constructive comments.

References